Name: __

Practice Exam 2
Modern Algebra
Friday, October 15, 2010

Remember that in general you cannot assume that multiplication of group elements is commutative. You may not use a calculator on this exam. Show all your work.

1. Consider the set \(S = \{10, 14, 2009, 9, 17, 23, -8, 0\} \). Find the equivalence classes of \(S \) under the equivalence relation of congruence modulo 3. [10 points]

2. Let \(a, b, x, y \in \mathbb{Z} \) and suppose \(a \mid x \) and \(b \mid y \). Prove that \(ab \mid xy \). [10 points]

3. Let \(p \) be prime, let \(a \) and \(b \) be integers, and suppose \(a^2 \equiv b^2 \pmod{p} \). Prove that \(a \equiv b \pmod{p} \) or \(a \equiv -b \pmod{p} \).

(HINT: Recall the lemma that if \(p \mid xy \), then \(p \mid x \) or \(p \mid y \).) [10 points]

4. Find the greatest common divisor of 6331 and 741. Be sure to show your work. [10 points]

5. Give an explicit counterexample to disprove the following statement:
 Let \(a, b, c, d \in \mathbb{Z} \). If \((a, b) = 1\) and \((c, d) = 1\), then \((ac, bd) = 1\). [10 points]

6. On the set \(\{x \in \mathbb{R} : x \neq 0\} \), define a relation by saying
 \[a \sim b \text{ iff } \frac{a}{b} \in \mathbb{Q}, \]
 where as usual \(\mathbb{Q} \) denotes the set of rational numbers. For example, \(3\pi \sim 7\pi \) since \(\frac{3\pi}{7\pi} = \frac{3}{7} \in \mathbb{Q} \). Prove that \(\sim \) is an equivalence relation. [10 points]

7. Consider the set of positive integers \(\mathbb{N} \). If \(a, b \in \mathbb{N} \), then we can factor them uniquely as
 \[a = 2^e m \quad \text{ and } \quad b = 2^f n, \]
 where \(e \geq 0, f \geq 0, \) and \(m \) and \(n \) are odd. Define an equivalence relation on \(\mathbb{N} \) by saying \(a \sim b \) if \(e = f \) in that factorization.
 Let \([x]\) denote the equivalence class of \(x \) under \(\sim \), and let \(S \) be the set of all equivalence classes. [10 points]

(a) If we try to define an operation \(\circ \) on \(S \) by saying \([x] \circ [y] = [xy]\), is this “operation” well-defined? If so, prove it; if not, give a specific counterexample with actual numbers.
(b) If we try to define an operation \oplus on S by saying $[x] \oplus [y] = [x + y]$, is this “operation” well-defined? If so, prove it; if not, give a specific counterexample with actual numbers.

8. Let A and B be groups, let $a \in A$, and let $b \in B$. Consider the element $(a, b) \in A \times B$. Prove that $o((a, b)) = o(a) o(b)$. [10 points]

9. In the group $S_5 \times \mathbb{Z}_3$, find the order of the element $((125)(34), [1])$. [10 points]

10. Here is the Cayley table for D_8:

<table>
<thead>
<tr>
<th></th>
<th>R_0</th>
<th>R_{90}</th>
<th>R_{180}</th>
<th>R_{270}</th>
<th>H</th>
<th>V</th>
<th>D_1</th>
<th>D_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_0</td>
<td>R_0</td>
<td>R_{90}</td>
<td>R_{180}</td>
<td>R_{270}</td>
<td>H</td>
<td>V</td>
<td>D_1</td>
<td>D_2</td>
</tr>
<tr>
<td>R_{90}</td>
<td>R_{90}</td>
<td>R_{180}</td>
<td>R_{270}</td>
<td>R_0</td>
<td>D_2</td>
<td>D_1</td>
<td>H</td>
<td>V</td>
</tr>
<tr>
<td>R_{180}</td>
<td>R_{180}</td>
<td>R_{270}</td>
<td>R_0</td>
<td>R_{90}</td>
<td>V</td>
<td>H</td>
<td>D_2</td>
<td>D_1</td>
</tr>
<tr>
<td>R_{270}</td>
<td>R_{270}</td>
<td>R_0</td>
<td>R_{90}</td>
<td>R_{180}</td>
<td>D_1</td>
<td>D_2</td>
<td>V</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>D_1</td>
<td>V</td>
<td>D_2</td>
<td>R_0</td>
<td>R_{180}</td>
<td>R_{90}</td>
<td>R_{270}</td>
</tr>
<tr>
<td>V</td>
<td>V</td>
<td>D_2</td>
<td>H</td>
<td>D_1</td>
<td>R_{180}</td>
<td>R_0</td>
<td>R_{270}</td>
<td>R_{90}</td>
</tr>
<tr>
<td>D_1</td>
<td>D_1</td>
<td>V</td>
<td>D_2</td>
<td>H</td>
<td>R_{270}</td>
<td>R_{90}</td>
<td>R_0</td>
<td>R_{180}</td>
</tr>
<tr>
<td>D_2</td>
<td>D_2</td>
<td>H</td>
<td>D_1</td>
<td>V</td>
<td>R_{90}</td>
<td>R_{270}</td>
<td>R_{180}</td>
<td>R_0</td>
</tr>
</tbody>
</table>

Find the subgroup $\langle R_{270}, H \rangle$ and list all of its elements. Be sure to show your work.

XC. Suppose A and B are subgroups of a group G, and suppose their union $A \cup B$ is also a subgroup of G. Prove that $A \subseteq B$ or $B \subseteq A$. [10 bonus points]