Section 1.4B Counting: Combinations

1. A 10 -member board self selects a president, a vice president, and a treasurer. In how many ways can this be done? (Order matters)

$$
{ }_{10} P_{3}=\frac{10!}{(10-3)!}=\frac{10!}{7!}=10 \times 9 \times 8=720
$$

2. A $10-$ member board self selects a subcommittee of 3 . In how many ways can this be done? (Order no longer matters).

$$
\frac{{ }_{10} P_{3}}{3!}=\frac{10!}{(10-3)!3!}=\frac{10!}{7!3!}=\frac{10 \times 9 \times 8}{3 \times 2 \times 1}=120
$$

3. Combinations:

A combination is an unordered arrangement of objects. If we want to take r things out of n total things in any order, then there are

$$
{ }_{n} C_{r}=\frac{{ }_{n} P_{r}}{r!}=\frac{n!}{(n-r)!r!}
$$

ways to do this. In example 2 above, there are

$$
{ }_{10} C_{3}=\frac{10!}{(10-3)!3!}=\frac{10!}{7!3!}=\frac{10 \times 9 \times 8}{3 \times 2 \times 1}=120
$$

ways.
4. Evaluate ${ }_{9} C_{5}$
5. Evaluate ${ }_{5} C_{3}$
6. How many different 5 -card poker hands can be dealt from a standard deck of 52 cards?
7. In how many different ways can the 9 -member US Supreme Court reach a 6-3 decision?
8. A quiz contains 5 true/false questions.

- In how many ways can the quiz be completed?
- How many of the ways from (a) contain exactly 3 correct answers?
- How many of the ways from (a) contain at least 3 correct answers?

9. A committee of 13 has 7 women and 6 men. In how many ways can a subcommittee of 5 be formed if it consists of:

- all women?
- any 5 people?
- exactly 2 men and 3 women?
- at least 1 woman?
- at least 3 women?

10. A telemarketer makes 15 phone calls in 1 hour. In how many ways can the outcomes of the calls be 3 sales, 8 no-sales, and 4 answering machines?
