1.2 IVPs, Existence \& Uniqueness

1. Theorem 1.2.1:
2. Consider $\frac{d y}{d x}=f(y)$, where f and $\frac{\partial f}{\partial y}$ are continuous on $(-\infty, \infty)$.

If $y_{1}=4, y_{2}=2, y_{3}=0$ are all constant solutions, what can be said about a solution y satisfying $y(0)=1$?
3. Consider $\frac{d y}{d x}=y(y-2)(y-3)$. What happens to a solution y through the point $(0,-1) ?(0,1) ?(0,3)$?
4. Consider $\frac{d y}{d x}=y^{2 / 3}$. Show that $y_{1}=\frac{x^{3}}{27}$ is a solution through $(0,0)$. Find a constant solution y_{2} to the differential equation that also goes through $(0,0)$. Why does uniqueness fail here?
5. Consider $\frac{d y}{d x}=-y^{2}$. Verify that $y=\frac{1}{x+c}$ is a family of solutions.
(a) Find a solution satisfying $y(0)=1$, and its maximal interval of existence I.
(b) Find a solution satisfying $y(0)=-1$, and its maximal interval of existence I.
(c) Find a solution satisfying $y(0)=-1 / 2$, and its maximal interval of existence I.
(d) If y is a solution with $-1<y(0)<-1 / 2$, explain its long-term behavior.
(e) If y is a solution with $y(0)>0$, explain its long-term behavior.
(f) If y is a solution with $y(0)=0$, explain its long-term behavior. What is its maximal interval of existence I ?
(g) Are there any constant solutions to this differential equation?

