1. Theorem 1.2.1:

2. Consider $\frac{dy}{dx} = f(y)$, where f and $\frac{\partial f}{\partial y}$ are continuous on $(-\infty, \infty)$.

If $y_1 = 4$, $y_2 = 2$, $y_3 = 0$ are all constant solutions, what can be said about a solution y satisfying y(0) = 1?

3. Consider $\frac{dy}{dx} = y(y-2)(y-3)$. What happens to a solution y through the point (0,-1)? (0,1)? (0,3)?

4. Consider $\frac{dy}{dx} = y^{2/3}$. Show that $y_1 = \frac{x^3}{27}$ is a solution through (0,0). Find a constant solution y_2 to the differential equation that also goes through (0,0). Why does uniqueness fail here?

- 5. Consider $\frac{dy}{dx} = -y^2$. Verify that $y = \frac{1}{x+c}$ is a family of solutions.
 - (a) Find a solution satisfying y(0) = 1, and its maximal interval of existence I.
 - (b) Find a solution satisfying y(0) = -1, and its maximal interval of existence I.
 - (c) Find a solution satisfying y(0) = -1/2, and its maximal interval of existence I.
 - (d) If y is a solution with -1 < y(0) < -1/2, explain its long-term behavior.
 - (e) If y is a solution with y(0) > 0, explain its long-term behavior.
 - (f) If y is a solution with y(0) = 0, explain its long-term behavior. What is its maximal interval of existence I?
 - (g) Are there any constant solutions to this differential equation?