16.5 Surface Integrals of Vector Fields

- 1. Motivation/Interpretation:
- 2. Oriented Surfaces:
- 3. Derivation:

4. Definition: Given a vector field F with unit normal vector e_n , the surface integral of F over the surface \mathcal{S} is

$$\iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S} = \iint_{\mathcal{S}} (\mathbf{F} \cdot \mathbf{e_n}) \ dS.$$

This integral is also called the flux of **F** across the surface \mathcal{S} .

5. Note: If the surface $\boldsymbol{\mathcal{S}}$ is given as the parametrized surface

$$\Phi(u,v) = \Big(x(u,v),\; y(u,v),\; z(u,v)\Big),$$

then

$$\mathbf{n} = \mathbf{T}_u \times \mathbf{T}_v$$
, so $\mathbf{e}_{\mathbf{n}} = \frac{\mathbf{T}_u \times \mathbf{T}_v}{\|\mathbf{T}_u \times \mathbf{T}_v\|}$.

Once we find $\mathbf{e_n}$, look at it to determine if it is the appropriate orientation; if not, use $-\mathbf{e_n}$.

6. Recall from Section 16.4 that $dS = ||\mathbf{n}|| dA$, and thus

$$\iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S} = \iint_{\mathcal{S}} (\mathbf{F} \cdot \mathbf{e_n}) dS$$

$$= \iint_{\mathcal{D}} \mathbf{F}(\Phi(u, v)) \cdot \frac{\mathbf{n}}{\|\mathbf{n}\|} \|\mathbf{n}\| dA$$

$$= \iint_{\mathcal{D}} \mathbf{F}(\Phi(u, v)) \cdot \mathbf{n}(u, v) dudv.$$

7. Let $\mathbf{F} = \langle x, y, z \rangle$ over the portion \mathcal{S} of the surface $z = 1 - x^2 - y^2$ that lies above the xy-plane, with upward-pointing normal. Determine the value of the surface integral of \mathbf{F} over \mathcal{S} .

8. Find the flux of $\mathbf{F} = \langle z, y, x \rangle$ across the unit sphere $x^2 + y^2 + z^2 = 1$, oriented outward.

9. Let $\mathbf{v} = \langle 2x, -3y, z \rangle$ be the velocity field, in ft/s, of a fluid in \mathbb{R}^3 . Calculate the flux, in ft³/s, through the portion of the plane x + y + z = 1 in the first octant.