1. Let $\varphi(x,y) = xy^3 + x^2$. Compute the work done along the curve \mathcal{C} by the gradient vector field of φ (see picture).

2. Fundamental Theorem for Line Integrals

- 3. Note: For a closed curve C, $F = \nabla \varphi$ implies that $\oint_C F \cdot ds = 0$.
- 4. Evaluate $\int_{\mathcal{C}} \nabla \varphi \cdot d\mathbf{s}$, where $\varphi(x, y, z) = \cos(\pi x) + \sin(\pi y) xyz$ for any curve \mathcal{C} from $(1, \frac{1}{2}, 2)$ to (2, 1, -1).
- 5. Equivalent Conditions for Path Independence

Assume F is a continuous vector field in some domain \mathcal{D} .

- **F** is a conservative vector field if there is a function φ such that $\mathbf{F} = \nabla \varphi$. The function φ is called a potential function for the vector field.
- $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{s}$ is independent of path if $\int_{\mathcal{C}_1} \mathbf{F} \cdot d\mathbf{s} = \int_{\mathcal{C}_2} \mathbf{F} \cdot d\mathbf{s}$ for any two paths \mathcal{C}_1 and \mathcal{C}_2 in \mathcal{D} with the same initial and final points.
- ullet A path $oldsymbol{\mathcal{C}}$ is closed if its initial and final points coincide. For example, any circle is a closed path.
- A path \mathcal{C} is simple if it does not cross itself. For example, a circle is a simple curve, but a figure 8 is not simple.
- \bullet A region \mathcal{D} is open if it does not contain any of its boundary points.
- A region \mathcal{D} is connected if we can connect any two points in the region with a path that lies completely in \mathcal{D} .
- ullet A region $\mathcal D$ is simply connected if it is connected and it contains no holes.
- 6. Conservative Vector Fields: Given a vector field, when is it conservative? If it is conservative, what is the potential?
- 7. Existence of a Potential Function: Let $\mathbf{F} = \langle F_1, F_2, F_3 \rangle$ be a vector field on a simply-connected domain \mathcal{D} . If the cross partials of \mathbf{F} are equal, that is

$$\frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x}, \qquad \frac{\partial F_1}{\partial z} = \frac{\partial F_3}{\partial x}, \qquad \frac{\partial F_2}{\partial z} = \frac{\partial F_3}{\partial y},$$

then $\mathbf{F} = \nabla \varphi$ for some potential φ .

- 8. Determine if the following vector fields are conservative and find a potential function for the vector field if it is conservative.
 - (a) $\mathbf{F} = \langle y + x, y x \rangle$
 - (b) $F = \langle \sin y + y \sin x, 1 + x \cos y \cos x \rangle$

9. Show that the vector field $\mathbf{F} = \langle yz^2, xz^2 - z, 2xyz - y \rangle$ is conservative and find a potential function for it.

10. Show that the vector field $\mathbf{F} = \langle z^3, -2yz, 3xz^2 - y^2 \rangle$ is conservative and find a potential function for it.

11. Vortex Vector Field: Consider $\mathbf{F} = \left\langle \frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right\rangle$.