16.3 Conservative Vector Fields

1. Let $\boldsymbol{\varphi}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{x} \boldsymbol{y}^{\mathbf{3}}+\boldsymbol{x}^{2}$. Compute the work done along the curve \mathcal{C} by the gradient vector field of $\boldsymbol{\varphi}$ (see picture).

2. Fundamental Theorem for Line Integrals

3. Note: For a closed curve $\mathcal{C}, \mathbf{F}=\boldsymbol{\nabla} \varphi$ implies that $\oint_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{s}=\mathbf{0}$.
4. Evaluate $\int_{\mathcal{C}} \nabla \varphi \cdot d \mathrm{~s}$, where $\varphi(x, y, z)=\cos (\pi x)+\sin (\pi y)-x y z$ for any curve \mathcal{C} from $\left(1, \frac{1}{2}, 2\right)$ to $(2,1,-1)$.
5. Equivalent Conditions for Path Independence

Assume \mathbf{F} is a continuous vector field in some domain \mathcal{D}.

- \mathbf{F} is a conservative vector field if there is a function φ such that $\mathbf{F}=\nabla \varphi$. The function φ is called a potential function for the vector field.
- $\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{s}$ is independent of path if $\int_{\mathcal{C}_{1}} \mathbf{F} \cdot d \mathbf{s}=\int_{\mathcal{C}_{2}} \mathbf{F} \cdot d \mathbf{s}$ for any two paths $\mathcal{C}_{\mathbf{1}}$ and $\mathcal{C}_{\mathbf{2}}$ in \mathcal{D} with the same initial and final points.
- A path \mathcal{C} is closed if its initial and final points coincide. For example, any circle is a closed path.
- A path \mathcal{C} is simple if it does not cross itself. For example, a circle is a simple curve, but a figure 8 is not simple.
- A region \mathcal{D} is open if it does not contain any of its boundary points.
- A region \mathcal{D} is connected if we can connect any two points in the region with a path that lies completely in \mathcal{D}.
- A region \mathcal{D} is simply connected if it is connected and it contains no holes.

6. Conservative Vector Fields: Given a vector field, when is it conservative? If it is conservative, what is the potential?
7. Existence of a Potential Function: Let $\mathbf{F}=\left\langle\boldsymbol{F}_{\mathbf{1}}, \boldsymbol{F}_{\mathbf{2}}, \boldsymbol{F}_{\mathbf{3}}\right\rangle$ be a vector field on a simplyconnected domain \mathcal{D}. If the cross partials of \mathbf{F} are equal, that is

$$
\frac{\partial F_{1}}{\partial y}=\frac{\partial F_{2}}{\partial x}, \quad \frac{\partial F_{1}}{\partial z}=\frac{\partial F_{3}}{\partial x}, \quad \frac{\partial F_{2}}{\partial z}=\frac{\partial F_{3}}{\partial y}
$$

then $\mathbf{F}=\nabla \boldsymbol{\rho}$ for some potential φ.
8. Determine if the following vector fields are conservative and find a potential function for the vector field if it is conservative.
(a) $\mathbf{F}=\langle\boldsymbol{y}+\boldsymbol{x}, \boldsymbol{y}-\boldsymbol{x}\rangle$
(b) $\mathrm{F}=\langle\sin y+y \sin x, 1+x \cos y-\cos x\rangle$
9. Show that the vector field $\mathbf{F}=\left\langle\boldsymbol{y} \boldsymbol{z}^{2}, \boldsymbol{x} \boldsymbol{z}^{\mathbf{2}}-\boldsymbol{z}, \mathbf{2 x} \boldsymbol{y} \boldsymbol{z}-\boldsymbol{y}\right\rangle$ is conservative and find a potential function for it.
10. Show that the vector field $\mathbf{F}=\left\langle\boldsymbol{z}^{\mathbf{3}},-\mathbf{2 y} \boldsymbol{z}, \mathbf{3} \boldsymbol{x} \boldsymbol{z}^{\mathbf{2}}-\boldsymbol{y}^{\mathbf{2}}\right\rangle$ is conservative and find a potential function for it.
11. Vortex Vector Field: Consider $\mathbf{F}=\left\langle\frac{-\boldsymbol{y}}{\boldsymbol{x}^{2}+\boldsymbol{y}^{2}}, \frac{\boldsymbol{x}}{\boldsymbol{x}^{2}+\boldsymbol{y}^{2}}\right\rangle$.

