16.2 Vector Line Integrals

- The (scalar) line integral of a function $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$ along a curve \mathcal{C} is denoted by $\int_{\mathcal{C}} \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) d s$.
- Computing a Scalar Line Integral: Let $\mathbf{c}(\boldsymbol{t})=(\boldsymbol{x}(\boldsymbol{t}), \boldsymbol{y}(\boldsymbol{t}), \boldsymbol{z}(\boldsymbol{t}))$ be a path parametrization of a curve \mathcal{C} for $\boldsymbol{a} \leq \boldsymbol{t} \leq \boldsymbol{b}$. Assume that $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$ and $\mathbf{c}^{\prime}(\boldsymbol{t})$ are continuous. Then

$$
\begin{aligned}
\int_{\mathcal{C}} f(x, y, z) d s & =\int_{a}^{b} f(\mathbf{c}(t))\left\|\mathbf{c}^{\prime}(t)\right\| d t \\
& =\int_{a}^{b} f(\boldsymbol{x}(\boldsymbol{t}), \boldsymbol{y}(\boldsymbol{t}), \boldsymbol{z}(\boldsymbol{t})) \sqrt{\left(\boldsymbol{x}^{\prime}(\boldsymbol{t})\right)^{2}+\left(\boldsymbol{y}^{\prime}(t)\right)^{2}+\left(z^{\prime}(\boldsymbol{t})\right)^{2}} d t .
\end{aligned}
$$

The value of the integral on the right is independent of the parametrization.

- Work done by a vector field
1.(a) Find the work done by the vector field $\mathbf{F}=\langle\boldsymbol{y}, \boldsymbol{x}\rangle$ along the curve \mathcal{C} given by $\boldsymbol{y}=\boldsymbol{x}^{\mathbf{2}}$ from $(0,0)$ to $(1,1)$.
1.(b) Another way (notation change)

2. (From MIT OpenCourseWare) Find the work done by the electrostatic field $\mathbf{F}=\langle\boldsymbol{y}, \boldsymbol{z}, \boldsymbol{x}\rangle$ in carrying a positive unit point charge from $(1,1,1)$ to $(2,4,8)$ along
(a) a straight line segment; (b) the curve described by $\boldsymbol{c}(\boldsymbol{t})=\left(\boldsymbol{t}, \boldsymbol{t}^{2}, \boldsymbol{t}^{3}\right)$.

- The work \boldsymbol{W} done by the vector field \mathbf{F} along the curve \mathcal{C} is given by $\boldsymbol{W}=\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{s}$.
- Let \mathcal{C} be an oriented curve, and let \mathbf{T} be the unit tangent vector pointing in the forward direction along \mathcal{C}. The (vector) line integral of a vector field \mathbf{F} along \mathcal{C} is the integral of the tangential component of \mathbf{F} :

$$
\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{s}=\int_{\mathcal{C}}(\mathbf{F} \cdot \mathbf{T}) d s
$$

- Computing a Vector Line Integral: Let $\mathbf{c}(\boldsymbol{t})=(\boldsymbol{x}(\boldsymbol{t}), \boldsymbol{y}(\boldsymbol{t}), \boldsymbol{z}(\boldsymbol{t}))$ be a regular path parametrization of an oriented curve \mathcal{C} for $\boldsymbol{a} \leq \boldsymbol{t} \leq \boldsymbol{b}$; here regular means $\mathbf{c}^{\prime}(\boldsymbol{t}) \neq \mathbf{0}$. Then the line integral of a vector field $\mathbf{F}=\left\langle\boldsymbol{F}_{\mathbf{1}}, \boldsymbol{F}_{\mathbf{2}}, \boldsymbol{F}_{\mathbf{3}}\right\rangle$ over the curve \mathcal{C} is

$$
\begin{aligned}
\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{s} & =\int_{a}^{b} \mathrm{~F}(\mathbf{c}(\boldsymbol{t})) \cdot \mathbf{c}^{\prime}(\boldsymbol{t}) d t \\
& =\int_{a}^{b} \mathbf{F}(\boldsymbol{x}(\boldsymbol{t}), \boldsymbol{y}(\boldsymbol{t}), \boldsymbol{z}(\boldsymbol{t})) \cdot\left\langle\boldsymbol{x}^{\prime}(\boldsymbol{t}), \boldsymbol{y}^{\prime}(\boldsymbol{t}), \boldsymbol{z}^{\prime}(\boldsymbol{t})\right\rangle d t
\end{aligned}
$$

This can also be written as

$$
\int_{\mathcal{C}} F_{1} d x+F_{2} d y+F_{3} d z=\int_{a}^{b}\left(F_{1}(\mathbf{c}(t)) \frac{d x}{d t}+F_{2}(\mathbf{c}(t)) \frac{d y}{d t}+F_{3}(\mathbf{c}(t)) \frac{d z}{d t}\right) d t .
$$

- Properties of Line Integrals: Let \mathcal{C} be a smooth oriented curve, and let \mathbf{F} and \mathbf{G} be vector fields.
(i) Linearity: $\int_{\mathcal{C}}(\mathbf{F}+\mathbf{G}) \cdot d \mathbf{s}=\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{s}+\int_{\mathcal{C}} \mathbf{G} \cdot d \mathbf{s}$ and $\int_{\mathcal{C}} k \mathbf{F} \cdot d \mathbf{s}=k \int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{s}$
(ii) Reverse Orientation: $\int_{-\mathcal{C}} \mathbf{F} \cdot d \mathbf{s}=-\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{s}$
(iii) Additivity: If \mathcal{C} is a union of n smooth curves $\mathcal{C}_{1}+\cdots+\mathcal{C}_{n}$, then

$$
\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{s}=\int_{\mathcal{C}_{1}} \mathbf{F} \cdot d \mathbf{s}+\cdots+\int_{\mathcal{C}_{n}} \mathbf{F} \cdot d \mathbf{s} .
$$

- The value of $\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{s}$ depends on the curve (trajectory) \mathcal{C}, but not on the parametrization of \mathcal{C}.

