## 16.2 Vector Line Integrals

- The (scalar) line integral of a function f(x, y, z) along a curve C is denoted by  $\int_{C} f(x, y, z) ds$ .
- Computing a Scalar Line Integral: Let c(t) = (x(t), y(t), z(t)) be a path parametrization of a curve  $\mathcal{C}$  for  $a \leq t \leq b$ . Assume that f(x, y, z) and c'(t) are continuous. Then

$$\int_{\mathcal{C}} f(x, y, z) ds = \int_{a}^{b} f(c(t)) ||c'(t)|| dt$$

$$= \int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{(x'(t))^{2} + (y'(t))^{2} + (z'(t))^{2}} dt.$$

The value of the integral on the right is independent of the parametrization.

• Work done by a vector field



1.(b) Another way (notation change)

- 2. (From MIT OpenCourseWare) Find the work done by the electrostatic field  $\mathbf{F}=\langle y,z,x\rangle$  in carrying a positive unit point charge from (1,1,1) to (2,4,8) along
  - (a) a straight line segment; (b) the curve described by  $c(t)=(t,t^2,t^3)$ .

- The work W done by the vector field F along the curve C is given by  $W = \int_{C} F \cdot ds$ .
- Let  $\mathcal{C}$  be an oriented curve, and let  $\mathbf{T}$  be the unit tangent vector pointing in the forward direction along  $\mathcal{C}$ . The (vector) line integral of a vector field  $\mathbf{F}$  along  $\mathcal{C}$  is the integral of the tangential component of  $\mathbf{F}$ :

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{s} = \int_{\mathcal{C}} (\mathbf{F} \cdot \mathbf{T}) \ ds.$$

• Computing a Vector Line Integral: Let c(t) = (x(t), y(t), z(t)) be a regular path parametrization of an oriented curve  $\mathcal{C}$  for  $a \leq t \leq b$ ; here regular means  $c'(t) \neq 0$ . Then the line integral of a vector field  $F = \langle F_1, F_2, F_3 \rangle$  over the curve  $\mathcal{C}$  is

$$\int_{c} \mathbf{F} \cdot d\mathbf{s} = \int_{a}^{b} \mathbf{F}(\mathbf{c}(t)) \cdot \mathbf{c}'(t) dt$$

$$= \int_{a}^{b} \mathbf{F}(x(t), y(t), z(t)) \cdot \langle x'(t), y'(t), z'(t) \rangle dt.$$

This can also be written as

$$\int_{\mathcal{C}} F_1 dx + F_2 dy + F_3 dz = \int_a^b \left( F_1(\mathbf{c}(t)) \frac{dx}{dt} + F_2(\mathbf{c}(t)) \frac{dy}{dt} + F_3(\mathbf{c}(t)) \frac{dz}{dt} \right) dt.$$

- Properties of Line Integrals: Let  $\mathcal{C}$  be a smooth oriented curve, and let  $\mathbf{F}$  and  $\mathbf{G}$  be vector fields.
  - (i) Linearity:  $\int_{\mathcal{C}} (\mathbf{F} + \mathbf{G}) \cdot d\mathbf{s} = \int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{s} + \int_{\mathcal{C}} \mathbf{G} \cdot d\mathbf{s}$  and  $\int_{\mathcal{C}} k\mathbf{F} \cdot d\mathbf{s} = k \int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{s}$
  - (ii) Reverse Orientation:  $\int_{-\mathcal{C}} \mathbf{F} \cdot d\mathbf{s} = -\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{s}$
  - (iii) Additivity: If  $\mathcal{C}$  is a union of n smooth curves  $\mathcal{C}_1 + \cdots + \mathcal{C}_n$ , then

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{s} = \int_{\mathcal{C}_1} \mathbf{F} \cdot d\mathbf{s} + \dots + \int_{\mathcal{C}_n} \mathbf{F} \cdot d\mathbf{s}.$$

• The value of  $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{s}$  depends on the curve (trajectory)  $\mathcal{C}$ , but not on the parametrization of  $\mathcal{C}$ .