## 16.1 Vector Fields

- A vector field in  $\mathbb{R}^2$  is a function **F** that assigns to each point (x, y) a vector  $\mathbf{F}(x, y)$ , or in  $\mathbb{R}^3$  to each point (x, y, z) a vector  $\mathbf{F}(x, y, z)$ .
- Mathematica examples:  $F_1(x, y) = i j$ ;  $F_2(x, y) = \langle y, -x \rangle$ ;  $F_3(x, y, z) = \langle x, y, z \rangle$ ;  $F_4(x, y, z) = \langle x, -y, \cos x \rangle$ ;
- For a function  $\varphi(x, y, z)$  the gradient vector is defined by  $\mathbf{F} = \nabla \varphi = \langle \varphi_x, \varphi_y, \varphi_z \rangle$ . This  $\mathbf{F}$  is often called a gradient vector field, and the function  $\varphi$  is the potential function for  $\mathbf{F}$ .
- Wind velocity vector field



1. Unit Vector Field: **F** is a unit vector field iff  $||\mathbf{F}(P)|| = 1$  for all points **P**. The unit radial vector fields are

$$e_r = \left\langle \frac{x}{r}, \frac{y}{r} \right\rangle$$
 and  $e_r = \left\langle \frac{x}{r}, \frac{y}{r}, \frac{z}{r} \right\rangle$ ,

where  $r=(x^2+y^2)^{1/2}$  in  $\mathbb{R}^2$  and  $r=(x^2+y^2+z^2)^{1/2}$  in  $\mathbb{R}^3$ , respectively.

2. Find the gradient vector field for  $\varphi(x,y)=x^2\sin(\pi y)$ 

3. Find the gradient vector field for  $\varphi(x,y,z)=ze^{-xy}$ 

4. Sketch the gradient vector field for  $\varphi(x,y) = x^2y - y^3$ , together with several contours for this function (*Mathematica*).

5. Cross Partials: The cross partials of a gradient vector field are equal.

## 16.2 Line Integrals for Scalar Functions

- The line integral of a function f(x, y, z) over a curve  $\mathcal{C}$  is called a scalar line integral and is denoted by  $\int_{\mathcal{C}} f(x, y, z) ds$ .
- Theorem: Let  $\mathbf{c}(t) = (x(t), y(t), z(t))$  be a path parametrization of a curve  $\mathcal{C}$  for  $a \leq t \leq b$ . Assume that f(x, y, z) and  $\mathbf{c}'(t)$  are continuous. Then

$$\begin{split} \int_{\mathcal{C}} f(x,y,z) \; ds \; &= \; \int_{a}^{b} f(\mathbf{c}(t)) \| \mathbf{c}'(t) \| \; dt \\ &= \; \int_{a}^{b} f\big(x(t),y(t),z(t)\big) \sqrt{\left(x'(t)\right)^{2} + \left(y'(t)\right)^{2} + \left(z'(t)\right)^{2}} \; dt. \end{split}$$

The value of the integral on the right is independent of the parametrization. For f(x, y, z) = 1 we obtain the length of C:

Length of 
$$\mathcal{C} = \int_{\mathcal{C}} \|\mathbf{c}'(t)\| \ dt$$
.

1. Evaluate the line integral  $\int_{\mathcal{C}} (xy + z^3) ds$  along the helix  $\mathcal{C}$  given by  $\mathbf{c}(t) = (\cos t, \sin t, t)$  for  $0 \le t \le \pi$ .