16.1 Vector Fields

- A vector field in $\mathbb{R}^{\mathbf{2}}$ is a function \mathbf{F} that assigns to each point $(\boldsymbol{x}, \boldsymbol{y})$ a vector $\mathbf{F}(\boldsymbol{x}, \boldsymbol{y})$, or in $\mathbb{R}^{\mathbf{3}}$ to each point $(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$ a vector $\mathbf{F}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$.
- Mathematica examples: $\mathbf{F}_{\mathbf{1}}(\boldsymbol{x}, \boldsymbol{y})=\mathbf{i}-\mathbf{j} ; \mathbf{F}_{\mathbf{2}}(\boldsymbol{x}, \boldsymbol{y})=\langle\boldsymbol{y},-\boldsymbol{x}\rangle ; \mathbf{F}_{\mathbf{3}}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})=\langle\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}\rangle$; $\mathrm{F}_{4}(x, y, z)=\langle\boldsymbol{x},-\boldsymbol{y}, \cos x\rangle ;$
- For a function $\varphi(x, y, z)$ the gradient vector is defined by $\mathbf{F}=\nabla \varphi=\left\langle\varphi_{x}, \varphi_{y}, \varphi_{z}\right\rangle$.

This \mathbf{F} is often called a gradient vector field, and the function φ is the potential function for \mathbf{F}.

- Wind velocity vector field

1. Unit Vector Field: \mathbf{F} is a unit vector field iff $\|\mathbf{F}(\boldsymbol{P})\|=\mathbf{1}$ for all points \boldsymbol{P}. The unit radial vector fields are

$$
e_{r}=\left\langle\frac{\boldsymbol{x}}{\boldsymbol{r}}, \frac{\boldsymbol{y}}{\boldsymbol{r}}\right\rangle \quad \text { and } \quad e_{r}=\left\langle\frac{\boldsymbol{x}}{\boldsymbol{r}}, \frac{\boldsymbol{y}}{\boldsymbol{r}}, \frac{\boldsymbol{z}}{\boldsymbol{r}}\right\rangle
$$

where $r=\left(x^{2}+y^{2}\right)^{1 / 2}$ in \mathbb{R}^{2} and $r=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$ in \mathbb{R}^{3}, respectively.
2. Find the gradient vector field for $\varphi(x, y)=x^{2} \sin (\pi y)$
3. Find the gradient vector field for $\varphi(x, y, z)=z e^{-x y}$
4. Sketch the gradient vector field for $\boldsymbol{\varphi}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{x}^{2} \boldsymbol{y}-\boldsymbol{y}^{3}$, together with several contours for this function (Mathematica).
5. Cross Partials: The cross partials of a gradient vector field are equal.

16.2 Line Integrals for Scalar Functions

- The line integral of a function $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$ over a curve \mathcal{C} is called a scalar line integral and is denoted by $\int_{\mathcal{C}} f(x, y, z) d s$.
- Theorem: Let $\mathbf{c}(\boldsymbol{t})=(\boldsymbol{x}(\boldsymbol{t}), \boldsymbol{y}(\boldsymbol{t}), \boldsymbol{z}(\boldsymbol{t}))$ be a path parametrization of a curve \mathcal{C} for $\boldsymbol{a} \leq \boldsymbol{t} \leq \boldsymbol{b}$. Assume that $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$ and $\mathbf{c}^{\prime}(\boldsymbol{t})$ are continuous. Then

$$
\begin{aligned}
\int_{\mathcal{C}} f(x, y, z) d s & =\int_{a}^{b} f(c(t))\left\|\mathrm{c}^{\prime}(t)\right\| d t \\
& =\int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}} d t
\end{aligned}
$$

The value of the integral on the right is independent of the parametrization. For $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})=\mathbf{1}$ we obtain the length of \mathcal{C} :

$$
\text { Length of } \mathcal{C}=\int_{\mathcal{C}}\left\|\mathbf{c}^{\prime}(\boldsymbol{t})\right\| d t
$$

1. Evaluate the line integral $\int_{\mathcal{C}}\left(x \boldsymbol{y}+\boldsymbol{z}^{3}\right) d s$ along the helix \mathcal{C} given by $\mathbf{c}(t)=(\cos t, \sin t, t)$ for $0 \leq t \leq \pi$.
