15.4 Double Integrals in Polar Coordinates

- Recall that for a continuous function $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ defined on the region

$$
R=\left\{(x, y): a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)\right\}
$$

for continuous functions $\boldsymbol{g}_{1}, \boldsymbol{g}_{2}$ with $\boldsymbol{g}_{1}(\boldsymbol{x}) \leq \boldsymbol{g}_{\mathbf{2}}(\boldsymbol{x})$ for all $\boldsymbol{x} \in[\boldsymbol{a}, \boldsymbol{b}]$, the double integral of \boldsymbol{f} over \boldsymbol{R} is

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

interpreted as the volume under the surface $\boldsymbol{z}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ over the region \boldsymbol{R}.

- Using polar coordinates:

$$
x=r \cos \theta \quad y=r \sin \theta \quad r^{2}=x^{2}+y^{2}
$$

we wish to derive the double integral formula

$$
\iint_{R} f(x, y) d A=\int_{\alpha}^{\beta} \int_{g_{1}(\theta)}^{g_{2}(\theta)} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

over

$$
R=\left\{(r, \theta): \alpha \leq \theta \leq \beta, g_{1}(\theta) \leq r \leq g_{2}(\theta)\right\}
$$

for continuous functions $\boldsymbol{g}_{1}, \boldsymbol{g}_{2}$ with $\boldsymbol{g}_{1}(\boldsymbol{\theta}) \leq \boldsymbol{g}_{2}(\boldsymbol{\theta})$ for all $\boldsymbol{\theta} \in[\alpha, \beta]$.

- Derivation:

1. Evaluate $\iint_{R}\left(3 x+4 y^{2}\right) d \boldsymbol{A}$, where \boldsymbol{R} is the region in the upper half plane bounded by the circles $\boldsymbol{x}^{2}+\boldsymbol{y}^{2}=1$ and $\boldsymbol{x}^{2}+\boldsymbol{y}^{2}=4$.
2. Sketch the region of integration and evaluate $\int_{0}^{1 / 2} \int_{\sqrt{3} x}^{\sqrt{1-x^{2}}} x d y d x$.
3. Integrate $f(x, y)=\left(\boldsymbol{x}^{2}+\boldsymbol{y}^{2}\right)^{-2}$ over \mathcal{D} given by $\boldsymbol{x} \geq 1, \boldsymbol{x}^{2}+\boldsymbol{y}^{2} \leq \mathbf{2}$. Sketch \mathcal{D}.
4. Sketch \mathcal{D} and integrate $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$, where $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{y}\left(\boldsymbol{x}^{2}+\boldsymbol{y}^{2}\right)^{-1}$ and \mathcal{D} is $\boldsymbol{y} \geq \frac{1}{2}, \boldsymbol{x}^{2}+\boldsymbol{y}^{2} \leq \mathbf{1}$.
5. Find the volume of the solid that lies under the paraboloid $\boldsymbol{z}=\boldsymbol{x}^{2}+\boldsymbol{y}^{2}$, above the $\boldsymbol{x} \boldsymbol{y}$-plane, and inside the cylinder $\boldsymbol{x}^{2}+\boldsymbol{y}^{2}=\boldsymbol{2} \boldsymbol{x}$.
