15.3 Triple Integrals

- Fubini's Theorem: If $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$ is continuous on the box \mathcal{B} defined by

$$
\mathcal{B}=\{(x, y, z): a \leq x \leq b, c \leq y \leq d, r \leq z \leq s\}
$$

then the triple integral of \boldsymbol{f} over $\boldsymbol{\mathcal { B }}$ is

$$
\iiint_{\mathcal{B}} f(x, y, z) d V=\int_{r}^{s} \int_{c}^{d} \int_{a}^{b} f(x, y, z) d x d y d z
$$

where the integrals are evaluated from the inside out.

- Theorem 2: Let \mathcal{D} be a region in the $\boldsymbol{x} \boldsymbol{y}$-plane. Assume that $\boldsymbol{\psi}(\boldsymbol{x}, \boldsymbol{y})$ and $\boldsymbol{\phi}(\boldsymbol{x}, \boldsymbol{y})$ are continuous with $\boldsymbol{\psi}(\boldsymbol{x}, \boldsymbol{y}) \leq \phi(\boldsymbol{x}, \boldsymbol{y})$ for $(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{D}$. Then the triple integral of a continuous function $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$ over the domain

$$
\mathcal{W}=\{(x, y, z):(x, y) \in \mathcal{D}\} \quad \text { and } \quad \psi(x, y) \leq z \leq \phi(x, y)
$$

exists and is equal to the iterated integral

$$
\iiint_{\mathcal{W}} f(x, y, z) d V=\iint_{\mathcal{D}}\left(\int_{z=\psi(x, y)}^{z=\phi(x, y)} f(x, y, z) d z\right) d A
$$

1. Evaluate the triple integral $\iiint_{\mathcal{B}} \boldsymbol{x} \boldsymbol{y} \boldsymbol{z}^{2} \boldsymbol{d} \boldsymbol{V}$, where \mathcal{B} is the rectangular box

$$
\mathcal{B}=\{(x, y, z): 0 \leq x \leq 1,-1 \leq y \leq 2,0 \leq z \leq 3\}
$$

Integrate with respect to \boldsymbol{x}, then \boldsymbol{y}, then \boldsymbol{z}.
2. Evaluate $\iiint_{\mathcal{W}} \boldsymbol{z} d \boldsymbol{V}$, where \mathcal{W} is the solid tetrahedron bounded by the four planes $\boldsymbol{x}=\mathbf{0}$, $y=0, z=0$, and $x+y+z=1$.
3. Let \mathcal{W} be the region bounded by

$$
z=4-y^{2}, \quad y=2 x, \quad z=0, \quad x \geq 0
$$

Express $\iiint_{\mathcal{W}} \boldsymbol{x} \boldsymbol{y} \boldsymbol{z} \boldsymbol{d} \boldsymbol{V}$ as an iterated integral in three orders: $d z d x d y, \quad d x d y d z, \quad d y d x d z$.
4. Use a triple integral to find the volume of the tetrahedron bounded by the planes $\boldsymbol{x}=\mathbf{2} \boldsymbol{y}, \boldsymbol{x}=\mathbf{0}$, $x+2 y+z=2$, and $z=0$.
5. Find the volume of the solid in \mathbb{R}^{3} bounded by $\boldsymbol{x}=\boldsymbol{y}^{2}, \boldsymbol{y}=\boldsymbol{x}^{2}, \boldsymbol{z}=\boldsymbol{x}+\boldsymbol{y}+5$, and $\boldsymbol{z}=\mathbf{0}$.
6. Evaluate $\iiint_{\mathcal{W}} \sqrt{\boldsymbol{x}^{2}+z^{2}} d \boldsymbol{V}$, where \mathcal{W} is the region bounded by the paraboloid $\boldsymbol{y}=\boldsymbol{x}^{2}+z^{2}$ and the plane $\boldsymbol{y}=4$.

