• Fubini's Theorem: If f(x,y,z) is continuous on the box \mathcal{B} defined by

$$\mathcal{B} = \{(x, y, z) : a \le x \le b, \ c \le y \le d, \ r \le z \le s\},\$$

then the triple integral of f over \mathcal{B} is

$$\iiint_{\mathcal{B}} f(x,y,z) \ dV = \int_{r}^{s} \int_{c}^{d} \int_{a}^{b} f(x,y,z) \ dx \ dy \ dz,$$

where the integrals are evaluated from the inside out.

• Theorem 2: Let \mathcal{D} be a region in the xy-plane. Assume that $\psi(x,y)$ and $\phi(x,y)$ are continuous with $\psi(x,y) \leq \phi(x,y)$ for $(x,y) \in \mathcal{D}$. Then the triple integral of a continuous function f(x,y,z) over the domain

$$\mathcal{W} = \{(x, y, z) : (x, y) \in \mathcal{D}\}$$
 and $\psi(x, y) \le z \le \phi(x, y)$

exists and is equal to the iterated integral

$$\iiint_{\mathcal{W}} f(x,y,z) \; dV = \iint_{\mathcal{D}} \left(\int_{z=\psi(x,y)}^{z=\phi(x,y)} f(x,y,z) \; dz
ight) \; dA$$

1. Evaluate the triple integral $\iiint_{\mathcal{B}} xyz^2 dV$, where \mathcal{B} is the rectangular box

$$\mathcal{B} = \{(x, y, z): 0 \le x \le 1, -1 \le y \le 2, 0 \le z \le 3\}.$$

Integrate with respect to \boldsymbol{x} , then \boldsymbol{y} , then \boldsymbol{z} .

2. Evaluate $\iiint_{\mathcal{W}} z \ dV$, where \mathcal{W} is the solid tetrahedron bounded by the four planes x = 0, y = 0, z = 0, and x + y + z = 1.

3. Let \mathcal{W} be the region bounded by

$$z = 4 - y^2, \quad y = 2x, \quad z = 0, \quad x \ge 0.$$

Express $\iiint_{\mathcal{W}} xyz \ dV$ as an iterated integral in three orders:

dz dx dy, dx dy dz, dy dx dz.

5. Find the volume of the solid in \mathbb{R}^3 bounded by $x = y^2$, $y = x^2$, z = x + y + 5, and z = 0.

6. Evaluate $\iiint_{\mathcal{W}} \sqrt{x^2 + z^2} \ dV$, where \mathcal{W} is the region bounded by the paraboloid $y = x^2 + z^2$ and the plane y = 4.