1. Theorem: For a continuous function f(x,y) defined on the region

$$R = \{(x, y) : a \le x \le b, \ g_1(x) \le y \le g_2(x)\}$$

for continuous functions g_1, g_2 with $g_1(x) \leq g_2(x)$ for all $x \in [a, b]$, the double integral of f over R is

$$\iint_R f(x,y)dA = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x,y)dydx.$$

If the region $R = \{(x,y) : c \leq y \leq d, h_1(y) \leq x \leq h_2(y)\}$ for continuous functions h_1, h_2 with $h_1(y) \leq h_2(y)$ for all $y \in [c,d]$, the double integral of f over R is

$$\iint_R f(x,y) dA = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x,y) dx dy.$$

2. Evaluate

$$\int_0^4 \int_{\sqrt{y}}^2 (xy+y) dx dy,$$

then switch the order of integration and evaluate again.

3. Evaluate
$$\int_0^1 \int_y^1 e^{x^2} dx dy.$$

4. Evaluate $\iint_R xy \ dA$ over the region R enclosed between $y = \frac{1}{2}x$, $y = \sqrt{x}$, x = 2, and x = 4.

5. Evaluate $\iint_R (2x - y^2) dA$ over the triangular region R enclosed by y = 1 - x, y = 1 + x, and y = 3.

6. Compute the integral of the function f(x,y) = x + y for $0 \le x \le 3$ and $0 \le y \le \sqrt{9 - x^2}$.

7. Find the volume of the solid that lies under the paraboloid $z = x^2 + y^2$ and above the region in the xy plane bounded by the line y = 2x and the parabola $y = x^2$.

8. Average Value: The average value of a function f(x,y) on a domain \mathcal{D} is defined by

$$\overline{f} = rac{1}{\operatorname{Area}(\mathcal{D})} \iint_{\mathcal{D}} f(x,y) \; dA = rac{\iint_{\mathcal{D}} f(x,y) \; dA}{\iint_{\mathcal{D}} 1 \; dA}.$$

9. Calculate the average value of the x-coordinate of a point on the semicircle $x^2 + y^2 \le R^2$, $x \ge 0$. What is the average value of the y-coordinate?