1. Theorem: For a continuous function $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ defined on the region

$$
R=\left\{(x, y): a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)\right\}
$$

for continuous functions $\boldsymbol{g}_{1}, \boldsymbol{g}_{2}$ with $\boldsymbol{g}_{1}(\boldsymbol{x}) \leq \boldsymbol{g}_{2}(\boldsymbol{x})$ for all $\boldsymbol{x} \in[\boldsymbol{a}, \boldsymbol{b}]$, the double integral of \boldsymbol{f} over \boldsymbol{R} is

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

If the region $R=\left\{(x, y): c \leq y \leq d, h_{1}(y) \leq x \leq \boldsymbol{h}_{2}(\boldsymbol{y})\right\}$ for continuous functions $\boldsymbol{h}_{1}, \boldsymbol{h}_{\mathbf{2}}$ with $\boldsymbol{h}_{\mathbf{1}}(\boldsymbol{y}) \leq \boldsymbol{h}_{\mathbf{2}}(\boldsymbol{y})$ for all $\boldsymbol{y} \in[\boldsymbol{c}, \boldsymbol{d}]$, the double integral of \boldsymbol{f} over \boldsymbol{R} is

$$
\iint_{R} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
$$

2. Evaluate

$$
\int_{0}^{4} \int_{\sqrt{y}}^{2}(x y+y) d x d y
$$

then switch the order of integration and evaluate again.
3. Evaluate $\int_{0}^{1} \int_{y}^{1} e^{x^{2}} d x d y$.
4. Evaluate $\iint_{\boldsymbol{R}} \boldsymbol{x} \boldsymbol{y} \boldsymbol{d} \boldsymbol{A}$ over the region \boldsymbol{R} enclosed between $\boldsymbol{y}=\frac{\mathbf{1}}{\mathbf{2}} \boldsymbol{x}, \boldsymbol{y}=\sqrt{\boldsymbol{x}}, \boldsymbol{x}=\mathbf{2}$, and $\boldsymbol{x}=4$.
5. Evaluate $\iint_{\boldsymbol{R}}\left(2 \boldsymbol{x}-\boldsymbol{y}^{2}\right) \boldsymbol{d} \boldsymbol{A}$ over the triangular region \boldsymbol{R} enclosed by $\boldsymbol{y}=1-\boldsymbol{x}, \boldsymbol{y}=1+\boldsymbol{x}$, and $\boldsymbol{y}=3$.
6. Compute the integral of the function $f(x, y)=x+y$ for $0 \leq x \leq 3$ and $0 \leq y \leq \sqrt{9-x^{2}}$.
7. Find the volume of the solid that lies under the paraboloid $\boldsymbol{z}=\boldsymbol{x}^{2}+\boldsymbol{y}^{2}$ and above the region in the $\boldsymbol{x} \boldsymbol{y}$ plane bounded by the line $\boldsymbol{y}=\boldsymbol{x}$ and the parabola $\boldsymbol{y}=\boldsymbol{x}^{\boldsymbol{2}}$.
8. Average Value: The average value of a function $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ on a domain \mathcal{D} is defined by

$$
\bar{f}=\frac{1}{\operatorname{Area}(\mathcal{D})} \iint_{\mathcal{D}} f(x, y) d A=\frac{\iint_{\mathcal{D}} f(x, y) d A}{\iint_{\mathcal{D}} 1 d A}
$$

9. Calculate the average value of the \boldsymbol{x}-coordinate of a point on the semicircle $\boldsymbol{x}^{2}+\boldsymbol{y}^{2} \leq \boldsymbol{R}^{2}$, $\boldsymbol{x} \geq \mathbf{0}$. What is the average value of the \boldsymbol{y}-coordinate?
