1. Review of Integration/Area: The definite integral of \boldsymbol{f} over the interval $[\boldsymbol{a}, \boldsymbol{b}]$ is

$$
\int_{a}^{b} f(x) d x=\lim _{\max \Delta x_{i} \rightarrow 0} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}
$$

provided the limit exists, and is the same for all choices of $\boldsymbol{c}_{\boldsymbol{i}} \in\left[\boldsymbol{x}_{\boldsymbol{i}-1}, \boldsymbol{x}_{\boldsymbol{i}}\right]$ for $\boldsymbol{i}=1, \ldots, \boldsymbol{n}$. We interpret this as representing the area under the curve of \boldsymbol{f} from \boldsymbol{a} to \boldsymbol{b}.
2. Volume: Given a continuous function $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}) \geq \mathbf{0}$ on the rectangle $\boldsymbol{a} \leq \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{c} \leq \boldsymbol{y} \leq \boldsymbol{d}$, we wish to find the volume of the solid under the surface of $\boldsymbol{z}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ and above the rectangle in the $\boldsymbol{x y}$ plane.
3. Double Integral: For any function $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ defined on the rectangle

$$
R=\{(x, y): a \leq x \leq b, c \leq y \leq d\}
$$

the double integral of \boldsymbol{f} over \boldsymbol{R} is

$$
\begin{aligned}
\iint_{R} f(x, y) d A & =\lim _{\max \Delta A_{i} \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}, y_{i}\right) \Delta A_{i} \\
& =\lim _{M, N \rightarrow \infty} \sum_{i=1}^{N} \sum_{j=1}^{M} f\left(P_{i j}\right) \Delta x_{i} \Delta y_{j}
\end{aligned}
$$

where $\boldsymbol{P}_{i j}=\left(\boldsymbol{x}_{i j}, \boldsymbol{y}_{i j}\right)$, provided the limit exists, and is the same for all choices of $\left(\boldsymbol{x}_{i j}, \boldsymbol{y}_{i j}\right) \in \boldsymbol{R}$ for $\boldsymbol{i}=1, \ldots, \boldsymbol{n}$. We interpret this as representing the volume under the surface of \boldsymbol{f} for $\boldsymbol{a} \leq \boldsymbol{x} \leq \boldsymbol{b}$ and $\boldsymbol{c} \leq \boldsymbol{y} \leq \boldsymbol{d}$.
4. Example: Go to page 883 , Figure 17, and problem $\# 3$.
5. Iterated Integrals: From Chapter 6 (page 382), the volume \boldsymbol{V} is

$$
V=\int_{a}^{b} A(x) d x \quad \text { or } \quad V=\int_{c}^{d} A(y) d y
$$

For fixed $\boldsymbol{x} \in[\boldsymbol{a}, \boldsymbol{b}]$ or fixed $\boldsymbol{y} \in[\boldsymbol{c}, \boldsymbol{d}]$, we have

$$
A(x)=\int_{c}^{d} f(x, y) d y \quad \text { or } \quad A(y)=\int_{a}^{b} f(x, y) d x
$$

Therefore the volume \boldsymbol{V} is given by

$$
V=\int_{a}^{b}\left[\int_{c}^{d} f(x, y) d y\right] d x \quad \text { or } \quad V=\int_{c}^{d}\left[\int_{a}^{b} f(x, y) d x\right] d y
$$

6. Fubini's Theorem: If \boldsymbol{f} is integrable over the rectangle \boldsymbol{R} given by

$$
R=\{(x, y): a \leq x \leq b, c \leq y \leq d\}
$$

then the double integral of \boldsymbol{f} over \boldsymbol{R} is

$$
\iint_{R} f(x, y) d A=\int_{a}^{b}\left[\int_{c}^{d} f(x, y) d y\right] d x=\int_{c}^{d}\left[\int_{a}^{b} f(x, y) d x\right] d y
$$

7. Example: If $R=\{(x, y): 1 \leq x \leq 3,0 \leq y \leq 2\}$, evaluate

$$
\iint_{R}\left(9 x^{2} y+8 x y^{3}\right) d A
$$

8. If $R=\{(x, y): 1 \leq x \leq 4,1 \leq y \leq 3\}$, evaluate $\iint_{R}(2 x+y) d A$.
9. Find the volume under the paraboloid $\boldsymbol{z}=\mathbf{1}-\boldsymbol{x}^{2}-\boldsymbol{y}^{2}$ over the unit square $[\mathbf{0}, \mathbf{1}] \times[\mathbf{0}, \mathbf{1}]$.
10. Evaluate $\iint_{\boldsymbol{R}} \frac{\boldsymbol{y}}{1+2 \boldsymbol{x}} \boldsymbol{d A}$, where $\boldsymbol{R}=[\mathbf{0}, 2] \times[0,4]$.
11. Evaluate $\iint_{\boldsymbol{R}} x^{2} \boldsymbol{y} d \boldsymbol{A}$, where $\boldsymbol{R}=[-1,1] \times[0,2]$.
12. Properties:
(a) $\iint_{R} c f(x, y) d A=c \iint_{R} f(x, y) d A$
(b) $\iint_{R}[f(x, y)+g(x, y)] d A=\iint_{R} f(x, y) d A+\iint_{R} g(x, y) d A$
(c) $\iint_{R} f(x, y) d A=\iint_{R_{1}} f(x, y) d A+\iint_{R_{2}} f(x, y) d A$, where $R=R_{1} \cup R_{2}$.
