1. Motivation:
2. Method of Lagrange Multipliers: To find the maximum and minimum values of $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$ subject to the constraint $\boldsymbol{g}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})=\boldsymbol{k}$:
(a) Find all values of $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ and $\boldsymbol{\lambda}$ such that

$$
\nabla f(x, y, z)=\lambda \nabla g(x, y, z) \quad \text { and } \quad g(x, y, z)=\boldsymbol{k} .
$$

(b) Evaluate \boldsymbol{f} at all the points $(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$ that result from Step (a). The largest of these values is the maximum value of \boldsymbol{f}; the smallest is the minimum value of \boldsymbol{f}.
3. Example: Find the extreme values of $f(x, y)=\boldsymbol{x}^{2}+\mathbf{2} \boldsymbol{y}^{2}$ given the constraint $\boldsymbol{x}^{2}+\boldsymbol{y}^{2}=\mathbf{1}$.
4. Find the points on the sphere $\boldsymbol{x}^{2}+\boldsymbol{y}^{2}+\boldsymbol{z}^{2}=\mathbf{4}$ that are closest to and farthest from the point $(3,1,-1)$.
5. The production of a company is given by the Cobb-Douglas function $\boldsymbol{P}=\mathbf{2 0 0} \boldsymbol{L}^{\mathbf{2 / 3}} \boldsymbol{K}^{1 / 3}$. Cost constraints on the business force $\mathbf{2 L}+\mathbf{5 K} \leq \mathbf{1 5 0}$. Find the values of the labor \boldsymbol{L} and capital \boldsymbol{K} to maximize production.
6. Find the maximum/minimum values of $f(x, y)=x^{2}+\boldsymbol{y}^{2}$ subject to $2 \boldsymbol{x}+3 \boldsymbol{y}=\mathbf{6}$.

