14.7 Optimization (Maxima and Minima)

1. Local Maximum/Minimum: A function \boldsymbol{f} has a local maximum at $(\boldsymbol{a}, \boldsymbol{b})$ if

$$
f(x, y) \leq f(a, b)
$$

when $(\boldsymbol{x}, \boldsymbol{y})$ is near $(\boldsymbol{a}, \boldsymbol{b})$, and $\boldsymbol{f}(\boldsymbol{a}, \boldsymbol{b})$ is called a local maximum value. A function \boldsymbol{f} has a local minimum at $(\boldsymbol{a}, \boldsymbol{b})$ if

$$
f(x, y) \geq f(a, b)
$$

when $(\boldsymbol{x}, \boldsymbol{y})$ is near $(\boldsymbol{a}, \boldsymbol{b})$, and $\boldsymbol{f}(\boldsymbol{a}, \boldsymbol{b})$ is called a local minimum value.
2. Global Maximum/Minimum: If

$$
f(x, y) \leq f(a, b)
$$

(or $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}) \geq \boldsymbol{f}(\boldsymbol{a}, \boldsymbol{b})$) for all points $(\boldsymbol{x}, \boldsymbol{y})$ in the domain of \boldsymbol{f}, then \boldsymbol{f} has a global maximum (or global minimum) at $(\boldsymbol{a}, \boldsymbol{b})$.
3. Example: $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})=\sin \boldsymbol{x}+\sin \boldsymbol{y}$.
4. Example: $f(x, y)=\left(x^{2}+y^{2}\right) e^{-x^{2}-y^{2}}$.
5. Example: $\frac{\cos \left(x^{2}+y^{2}\right)}{1+x^{2}+y^{2}}$.
6. Fermat's Theorem: If \boldsymbol{f} has a local maximum or minimum at $(\boldsymbol{a}, \boldsymbol{b})$ and the first-order partial derivatives exist there, then $f_{x}(a, b)=\mathbf{0}$ and $\boldsymbol{f}_{y}(\boldsymbol{a}, \boldsymbol{b})=\mathbf{0}$.
7. Critical Point: A point $(\boldsymbol{a}, \boldsymbol{b})$ is called a critical point (or stationary point) of \boldsymbol{f} if $\boldsymbol{f}_{\boldsymbol{x}}(\boldsymbol{a}, \boldsymbol{b})=\mathbf{0}$ and $f_{y}(a, b)=0$.
8. Example: Find the critical points and extreme values of the function

$$
f(x, y)=x^{2}+y^{2}-4 x-4 y+10
$$

9. Example: Find the extreme values of $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{y}^{2}-\boldsymbol{x}^{2}$.
10. Saddle Point: The point $\boldsymbol{P}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{f}(\boldsymbol{a}, \boldsymbol{b}))$ is a saddle point of $\boldsymbol{z}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ if $(\boldsymbol{a}, \boldsymbol{b})$ is a critical point of \boldsymbol{f} and if every open disk centered at $(\boldsymbol{a}, \boldsymbol{b})$ contains points $(\boldsymbol{x}, \boldsymbol{y})$ in the domain of \boldsymbol{f} for which $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})<\boldsymbol{f}(\boldsymbol{a}, \boldsymbol{b})$ and other points $(\boldsymbol{x}, \boldsymbol{y})$ in the domain of \boldsymbol{f} for which $f(x, y)>f(a, b)$.
11. Theorem (Second Derivative Test): Suppose the second partial derivatives of \boldsymbol{f} are continuous on a disk with center (a, b), and suppose that $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$, that is (a, b) is a critical point. Let

$$
D(a, b)=f_{x x}(a, b) f_{y y}(a, b)-\left(f_{x y}\right)^{2}(a, b)
$$

(a) If $\boldsymbol{D}>\mathbf{0}$ and $\boldsymbol{f}_{\boldsymbol{x} \boldsymbol{x}}(\boldsymbol{a}, \boldsymbol{b})>\mathbf{0}$, then $\boldsymbol{f}(\boldsymbol{a}, \boldsymbol{b})$ is a local minimum.
(b) If $\boldsymbol{D}>\mathbf{0}$ and $\boldsymbol{f}_{\boldsymbol{x x}}(\boldsymbol{a}, \boldsymbol{b})<\mathbf{0}$, then $\boldsymbol{f}(\boldsymbol{a}, \boldsymbol{b})$ is a local maximum.
(c) If $\boldsymbol{D}<0$, then $\boldsymbol{f}(\boldsymbol{a}, \boldsymbol{b})$ has a saddle point at $(\boldsymbol{a}, \boldsymbol{b})$.
(d) If $\boldsymbol{D}=\mathbf{0}$, then no conclusion (could be a local max, local min, or a saddle point at $(\boldsymbol{a}, \boldsymbol{b})$).
12. Example: Suppose some function f has continuous second derivatives, and a critical point at $(1,2)$. If $f_{x x}(1,2)=1, f_{x y}(1,2)=4$ and $f_{y y}(1,2)=18$, then classify the point $(1,2)$. If instead $f_{y y}(1,2)=k$, for what values of k is $(\mathbf{1}, 2)$ a saddle point?
13. Find the local maximum and minimum values and all saddle points of

$$
f(x, y)=x^{4}+y^{4}-4 x y+1
$$

14. Extreme Value Theorem: Suppose that $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ is continuous on the closed and bounded region $\boldsymbol{R} \subset \mathbb{R}^{2}$. Then \boldsymbol{f} has both a global maximum and a global minimum on \boldsymbol{R}. Further, a global extremum may only occur at a critical point in \boldsymbol{R} or at a point on the boundary of \boldsymbol{R}.
15. Upshot: To find the global maximum and minimum values of a continuous function \boldsymbol{f} on a closed and bounded set \boldsymbol{D} :
16. Find the values of \boldsymbol{f} at the critical points of \boldsymbol{f} in \boldsymbol{D}.
17. Find the extreme values of \boldsymbol{f} on the boundary of \boldsymbol{D}.
18. The largest of the values from steps 1 and 2 is the global maximum value; the smallest of these values is the global minimum value.
19. Find the global maximum and minimum values of the function $f(x, y)=x^{2}-2 x y+2 y$ on the rectangle $\boldsymbol{D}=\{(\boldsymbol{x}, \boldsymbol{y}): 0 \leq x \leq 3,0 \leq \boldsymbol{y} \leq 2\}$.
20. Find the global maximum and minimum values of the function $f(x, y)=3+x y-x-2 y$ on the closed triangular region with vertices $(1,0),(5,0)$, and $(1,4)$.
21. Examples: Find the point on the plane $\boldsymbol{x}-\boldsymbol{y}+\boldsymbol{z}=\mathbf{4}$ that is closest to the point $(\mathbf{1}, \mathbf{2}, \mathbf{3})$.

Find the points on the surface $\boldsymbol{x}^{2} \boldsymbol{y}^{2} \boldsymbol{z}=\mathbf{1}$ that are closest to the origin.

Find three positive numbers $\boldsymbol{x}, \boldsymbol{y}$, and \boldsymbol{z} whose sum is $\mathbf{1 0 0}$ and whose product is maximum.

A rectangular box without a lid is to be made from $12 \mathrm{~m}^{2}$ of cardboard. Find the maximum volume of such a box.

Find the volume of the largest rectangular box with edges parallel to the axes that can be inscribed in the ellipsoid $9 x^{2}+36 y^{2}+4 z^{2}=36$.

