14.5 The Gradient Vector and Directional Derivatives

1. Gradient Vector: If \boldsymbol{f} is a function of two variables \boldsymbol{x} and \boldsymbol{y}, then the gradient of \boldsymbol{f} is the vector function $\boldsymbol{\nabla} f$ defined by
2. Find the gradient of $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})=\sin \boldsymbol{x}+\boldsymbol{e}^{x y}$ at $(0,1)$.
3. Find $\nabla \boldsymbol{g}(\boldsymbol{a}, \boldsymbol{b})$ if $\boldsymbol{g}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{x} \boldsymbol{y}^{2}-\mathbf{2} \boldsymbol{x} \boldsymbol{y}$.
4. The air temperature at ground level $(\boldsymbol{x}, \boldsymbol{y})$ is given (in Celsius) by the function

$$
T(x, y)=20-x-y+0.05 x^{3}-0.2 y^{2}
$$

Find the temperature gradient at the origin and at the point $(-4,1)$. (See picture.)
5. Recall for $\boldsymbol{z}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ we defined the partial derivatives at $(\boldsymbol{a}, \boldsymbol{b})$ by
6. Directional Derivative: The directional derivative of \boldsymbol{f} at $(\boldsymbol{a}, \boldsymbol{b})$ in the direction of a unit vector $\mathbf{u}=\left\langle\boldsymbol{u}_{1}, \boldsymbol{u}_{2}\right\rangle$ is
if this limit exists. If $\mathbf{u}=\mathrm{i}=\langle\mathbf{1}, \mathbf{0}\rangle$, then $\boldsymbol{D}_{\mathrm{i}} f(a, b)=f_{\boldsymbol{x}}(\boldsymbol{a}, \boldsymbol{b})$, and if $\mathbf{u}=\mathrm{j}=\langle\mathbf{0}, \mathbf{1}\rangle$, then $D_{\mathrm{j}} f(a, b)=f_{y}(a, b)$.
7. Theorem: If \boldsymbol{f} is a differentiable function of \boldsymbol{x} and \boldsymbol{y}, then \boldsymbol{f} has a directional derivative in the direction of any unit vector $\mathbf{u}=\left\langle\boldsymbol{u}_{\mathbf{1}}, \boldsymbol{u}_{\boldsymbol{2}}\right\rangle$ and

Using the gradient vector we may rewrite the directional derivative in the direction of the unit vector \mathbf{u} as
8. Find the directional derivative of $f(x, y)=\boldsymbol{x}^{2} \boldsymbol{y}^{3}-4 \boldsymbol{y}$ at the point $(2,-1)$ in the direction of the vector $\mathbf{v}=2 \mathbf{i}+5 \mathbf{j}$.
9. Find the directional derivative of $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{x} \boldsymbol{e}^{\boldsymbol{y}}+\boldsymbol{\operatorname { c o s }}(\boldsymbol{x} \boldsymbol{y})$ at the point $(2,0)$ in the direction of $v=3 i-4 j$.
10. Find the directional derivative of $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{x}^{\mathbf{3}}-\mathbf{3 x} \boldsymbol{y}+\boldsymbol{y}^{\mathbf{2}}$ in the direction $\boldsymbol{\theta}=\boldsymbol{\pi} / \mathbf{6}$, that is, in the direction that points upward and to the right at an angle of $\boldsymbol{\theta}$. What is $\boldsymbol{D}_{\mathrm{u}} \boldsymbol{f}(\mathbf{1}, \mathbf{2})$?
11. Chain Rule for Paths: If $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ is a differentiable function and $\mathbf{c}(\boldsymbol{t})=\langle\boldsymbol{x}(\boldsymbol{t}), \boldsymbol{y}(\boldsymbol{t})\rangle$ is a differentiable path, then

$$
\frac{d}{d t} f(\mathrm{c}(t))=
$$

12. Use the chain rule for paths to calculate $\frac{d}{d t} f(\mathrm{c}(t))$ for $f(x, y)=x^{2}-3 x y$ and $\mathrm{c}(t)=(\cos t, \sin t)$ at $\boldsymbol{t}=\mathbf{0}$.
13. Three Variables: The gradient for $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$ is
and the directional derivative in the direction of a unit vector \mathbf{u} is
14. Recall the angle between two vectors.
15. Theorem: Suppose that \boldsymbol{f} is a differentiable function of two (or three) variables. Then
(a) the maximum value of the directional derivative $\boldsymbol{D}_{\mathbf{u}} \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ (the maximum rate of change of $\boldsymbol{f})$ at $(\boldsymbol{a}, \boldsymbol{b})$ is $\|\nabla \boldsymbol{f}(\boldsymbol{a}, \boldsymbol{b})\|$ and it occurs when \boldsymbol{u} has the same direction as the gradient vector $\boldsymbol{\nabla} f(\boldsymbol{x}, \boldsymbol{y})$: \boldsymbol{f} increases most rapidly in the direction of the gradient;
(b) the minimum value of the directional derivative $\boldsymbol{D}_{\mathbf{u}} \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ (the minimum rate of change of $\boldsymbol{f})$ at $(\boldsymbol{a}, \boldsymbol{b})$ is $-\|\boldsymbol{\nabla}(\boldsymbol{a}, \boldsymbol{b})\|$ and it occurs when \boldsymbol{u} has the opposite direction as the gradient vector $\boldsymbol{\nabla} f(\boldsymbol{x}, \boldsymbol{y}): \boldsymbol{f}$ decreases most rapidly in the direction opposite the gradient;
(c) the rate of change of \boldsymbol{f} at $(\boldsymbol{a}, \boldsymbol{b})$ is $\mathbf{0}$ in the directions orthogonal to $\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{a}, \boldsymbol{b})$;
(d) the gradient $\boldsymbol{\nabla} f(\boldsymbol{a}, \boldsymbol{b})$ is orthogonal to the level curve $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{c}$ at the point $(\boldsymbol{a}, \boldsymbol{b})$, where $c=f(a, b)$.

Proof:
16. If $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{x} \boldsymbol{e}^{\boldsymbol{y}}$, find the rate of change of \boldsymbol{f} at the point $\boldsymbol{P}(\mathbf{2}, \mathbf{0})$ in the direction from \boldsymbol{P} to $Q(\mathbf{1} / \mathbf{2}, 2)$. In what direction does f have the maximum rate of change? What is this maximum rate of change?
17. Find the direction in which the function $f(x, y)=e^{2 x+3 y-1}$ increases most rapidly, starting at the point $(3,7)$, and calculate its directional derivative in that direction.
18. If the elevation of a hill is given by $f(x, y)=200-\boldsymbol{y}^{2}-\mathbf{4} \boldsymbol{x}^{2}$, in which direction will rain water run off the hill at the site $(\mathbf{1}, \mathbf{2})$?
19. Theorem: If $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$ has continuous partial derivatives at the point $(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c})$ and $\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}) \neq \mathbf{0}$, then $\nabla f(a, b, c)$ is a normal vector to the tangent plane to the surface $f(x, y, z)=\boldsymbol{k}$ at the point $(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c})$ and the equation of the tangent plane is

$$
0=f_{x}(a, b, c)(x-a)+f_{y}(a, b, c)(y-b)+f_{z}(a, b, c)(z-c)
$$

Moreover the normal line through the surface at the point (a, b, c) in the direction of $\nabla f(a, b, c)$ has parametric equations

$$
x=a+f_{x}(a, b, c) t, \quad y=b+f_{y}(a, b, c) t, \quad z=c+f_{z}(a, b, c) t
$$

20. Find equations of the tangent plane and normal line to $\boldsymbol{x}^{3} \boldsymbol{y}-\boldsymbol{y}^{2}+\boldsymbol{z}^{2}=7$ at the point $(1,2,3)$.
