14.4 Tangent Planes and Linear Approximations

1. Tangent Plane:
2. Tangent Plane and Normal Line:
3. Find the tangent plane and the normal line to the elliptic paraboloid $\boldsymbol{z}=\mathbf{2} \boldsymbol{x}^{\mathbf{2}}+\boldsymbol{y}^{\mathbf{2}}$ at the point $(1,1,3)$.
4. Find the tangent plane and the normal line to the surface $z=\sqrt{4-x^{2}-2 y^{2}}$ at the point $(1,-1,1)$.
5. Find the tangent plane to the surface $\boldsymbol{z} \boldsymbol{e}^{\boldsymbol{z}}=\boldsymbol{x}^{\mathbf{2}}-\boldsymbol{y}^{\mathbf{2}}$ at the point $(\mathbf{1}, \mathbf{1}, \mathbf{0})$.
6. Linearization/Linear Approximations:
7. Find the linearization of the function $f(x, y)=\sqrt{\boldsymbol{x} \boldsymbol{y}}$ at the point $(4,16)$.
8. Find the linearization at $(\mathbf{0}, \mathbf{0})$ of the function $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})=\mathbf{1}+\boldsymbol{y}+\boldsymbol{x} \cos \boldsymbol{y}$.
9. If $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{x}^{2}+\boldsymbol{y}^{\mathbf{2}}$ and the local linearization to \boldsymbol{f} at a point \boldsymbol{P} is given by

$$
L(x, y)=2 y-2 x-2
$$

find \boldsymbol{P}.
10. Recall that for a function of one variable, $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$, if \boldsymbol{x} changes from \boldsymbol{a} to $\boldsymbol{a}+\boldsymbol{\Delta} \boldsymbol{x}$, we defined the increment of \boldsymbol{y} as

$$
\Delta y=f(a+\Delta x)-f(a)
$$

If \boldsymbol{f} is differentiable at \boldsymbol{a}, then

$$
\Delta y=f^{\prime}(a) \Delta x+\varepsilon \Delta x
$$

where $\boldsymbol{\varepsilon} \rightarrow \mathbf{0}$ as $\boldsymbol{\Delta x} \boldsymbol{x} \mathbf{0}$.
11. Increment of \boldsymbol{z} : If $\boldsymbol{z}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ and \boldsymbol{x} changes from $(\boldsymbol{a}, \boldsymbol{b})$ to $(\boldsymbol{a}+\boldsymbol{\Delta}, \boldsymbol{b}+\boldsymbol{\Delta} \boldsymbol{y})$, then the increment of \boldsymbol{z} is given by

$$
\Delta z=f(a+\Delta x, b+\Delta y)-f(a, b)
$$

12. Differentiable: If $\boldsymbol{z}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$, then \boldsymbol{f} is differentiable at $(\boldsymbol{a}, \boldsymbol{b})$ if $\boldsymbol{\Delta} \boldsymbol{z}$ can be expressed in the form

$$
\Delta z=f_{x}(a, b) \Delta x+f_{y}(a, b) \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y
$$

where ε_{1} and $\varepsilon_{2} \rightarrow 0$ as $(\Delta x, \Delta y) \rightarrow(0,0)$.
13. Theorem: If the partial derivatives $\boldsymbol{f}_{\boldsymbol{x}}$ and $\boldsymbol{f}_{\boldsymbol{y}}$ exist near $(\boldsymbol{a}, \boldsymbol{b})$ and are continuous at $(\boldsymbol{a}, \boldsymbol{b})$, then \boldsymbol{f} is differentiable at $(\boldsymbol{a}, \boldsymbol{b})$.
14. Show that $f(x, y)=x e^{x y}$ is differentiable at $(1,0)$ and find its linearization there.
15. If $f(x, y)$ is differentiable at $(3,4)$ with $f(3,4)=5, f_{x}(3,4)=2$ and $f_{y}(3,4)=-1$, estimate the value of $\boldsymbol{f}(\mathbf{3 . 0 1}, 3.98)$.
16. Estimate the value of the function $\boldsymbol{z} \boldsymbol{e}^{\boldsymbol{z}}=\boldsymbol{x}^{2}-\boldsymbol{y}^{2}$ at the point $(\mathbf{1 . 1}, \mathbf{1 . 2})$.

