14.3 Partial Derivatives

1. Let $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ be a function of two variables, where $\boldsymbol{y}=\boldsymbol{b}$ is fixed. Then $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{b})$ is a function of a single variable \boldsymbol{x}. If \boldsymbol{g} has a derivative at \boldsymbol{a}, then we call it the partial derivative of \boldsymbol{f} with respect to \boldsymbol{x} at $(\boldsymbol{a}, \boldsymbol{b})$ and write

$$
f_{x}(a, b)=g^{\prime}(a)
$$

2. Now keep $\boldsymbol{x}=\boldsymbol{a}$ fixed, and let $\boldsymbol{h}(\boldsymbol{y})=\boldsymbol{f}(\boldsymbol{a}, \boldsymbol{y})$. If \boldsymbol{h} has a derivative at \boldsymbol{b}, then we call it the partial derivative of \boldsymbol{f} with respect to \boldsymbol{y} at $(\boldsymbol{a}, \boldsymbol{b})$ and write

$$
f_{y}(a, b)=h^{\prime}(b)
$$

3. By the definition of a derivative, we have

$$
\begin{aligned}
f_{x}(a, b) & =\lim _{h \rightarrow 0} \frac{f(a+h, b)-f(a, b)}{h} \\
f_{y}(a, b) & =\lim _{k \rightarrow 0} \frac{f(a, b+k)-f(a, b)}{k}
\end{aligned}
$$

The partial derivatives of $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ are the functions $\boldsymbol{f}_{\boldsymbol{x}}(\boldsymbol{x}, \boldsymbol{y})$ and $\boldsymbol{f}_{\boldsymbol{y}}(\boldsymbol{x}, \boldsymbol{y})$ obtained by letting the point $(\boldsymbol{a}, \boldsymbol{b})$ vary.
4. Notation: If $\boldsymbol{z}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$, then we may write

$$
\begin{aligned}
f_{x}(x, y) & =f_{x}=\frac{\partial f}{\partial x}=\frac{\partial}{\partial x} f(x, y)=\frac{\partial z}{\partial x}=f_{1}=D_{1} f=D_{x} f \\
f_{y}(x, y) & =f_{y}=\frac{\partial f}{\partial y}=\frac{\partial}{\partial y} f(x, y)=\frac{\partial z}{\partial y}=f_{2}=D_{2} f=D_{y} f
\end{aligned}
$$

5. To find $\boldsymbol{f}_{\boldsymbol{x}}$ regard \boldsymbol{y} as a constant and differentiate $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ with respect to \boldsymbol{x}. To find $\boldsymbol{f}_{\boldsymbol{y}}$ regard \boldsymbol{x} as a constant and differentiate $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ with respect to \boldsymbol{y}.
6. If $f(x, y)=x^{2}+3 x^{3} y-x y^{2}$ find $f_{x}(0,1)$ and $f_{y}(1,0)$.
7. Find $\frac{\partial f}{\partial \boldsymbol{x}}$ and $\frac{\partial f}{\partial \boldsymbol{y}}$ for the following functions.

$$
f(x, y)=\frac{2 y}{y+\cos x}
$$

$$
f(x, y)=e^{x^{2}+y^{2}+1}
$$

$$
f(x, y)=\ln \left(x^{4}+2 y^{3}\right)
$$

8. Find $\frac{\boldsymbol{\partial} \boldsymbol{z}}{\boldsymbol{\partial} \boldsymbol{x}}$ and $\frac{\boldsymbol{\partial} \boldsymbol{z}}{\boldsymbol{\partial} \boldsymbol{y}}$ if \boldsymbol{z} is defined implicitly as a function of \boldsymbol{x} and \boldsymbol{y} by the equation

$$
x^{3}+y^{3}+z^{3}+6 x y z=1 .
$$

9. Interpretations: Partial derivative can be interpreted as rates of change. The geometric interpretation: the partial derivatives are the slopes of the tangent lines at $\boldsymbol{P}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c})$ to the curves given by the intersection of the surface given by $\boldsymbol{z}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ and the planes $\boldsymbol{x}=\boldsymbol{a}$ and $\boldsymbol{y}=\boldsymbol{b}$.
10. If \boldsymbol{f} is a function of two variables, then its partial derivatives $\boldsymbol{f}_{\boldsymbol{x}}$ and $\boldsymbol{f}_{\boldsymbol{y}}$ are also functions of two variables.
11. Second Partials: The second partial derivatives of \boldsymbol{f} are

$$
\begin{aligned}
& \left(f_{x}\right)_{x}=f_{x x}=f_{11}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial^{2} z}{\partial x^{2}} \\
& \left(f_{x}\right)_{y}=f_{x y}=f_{12}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial^{2} z}{\partial y \partial x} \\
& \left(f_{y}\right)_{x}=f_{y x}=f_{21}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} z}{\partial x \partial y} \\
& \left(f_{y}\right)_{y}=f_{y y}=f_{22}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial^{2} z}{\partial y^{2}}
\end{aligned}
$$

12. Find all second partial derivatives of

$$
f(x, y)=x^{3}+x^{2} y^{3}-2 y^{2}
$$

13. Clairaut's Theorem: Suppose \boldsymbol{f} is defined on a disk \boldsymbol{D} that contains the point $(\boldsymbol{a}, \boldsymbol{b})$. If the functions $\boldsymbol{f}_{\boldsymbol{x y}}$ and $\boldsymbol{f}_{\boldsymbol{y} \boldsymbol{x}}$ are both continuous on \boldsymbol{D}, then

$$
f_{x y}(a, b)=f_{y x}(a, b)
$$

14. Calculate $f_{x x y}$ if $f(x, y)=\sin \left(3 x^{2}+x y\right)$.
15. Find the partial derivatives of $f(x, y)=\int_{x}^{y} e^{t^{2}+t+1} d t$.
16. Find $f_{x}, f_{y}, f_{x y}, f_{y x}$ for $f(x, y)=x y e^{3 x y}$.
