14.1 Functions of Several Variables

1. A function of two variables is a rule that assigns to each ordered pair of real numbers $(\boldsymbol{x}, \boldsymbol{y})$ in a set \boldsymbol{D} a unique real number denoted by $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$.
2. The set \boldsymbol{D} is the domain of \boldsymbol{f} and its range is the set of values that \boldsymbol{f} takes on.
3. We also write $\boldsymbol{z}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$. The variables \boldsymbol{x} and \boldsymbol{y} are independent variables and \boldsymbol{z} is the dependent variable.
4. Example: Find the domain of the function $f(x, y)=\frac{2 x+3 y}{x^{2}+y^{2}-9}$.
5. Find the domain and range of $f(x, y)=\sqrt{4-x^{2}-\boldsymbol{y}^{2}}$.
6. If \boldsymbol{f} is a function of two variables with domain \boldsymbol{D}, then the graph of \boldsymbol{f} is the set of all points $(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in \mathbb{R}^{\boldsymbol{3}}$ such that $\boldsymbol{z}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ and $(\boldsymbol{x}, \boldsymbol{y})$ is in \boldsymbol{D}.
7. A linear function is a function $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{a x}+\boldsymbol{b} \boldsymbol{y}+\boldsymbol{c}$. The graph of a linear function is a plane.
8. Example: $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})=\sin \boldsymbol{x}+\sin \boldsymbol{y}$
9. Example: $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})=\left(\boldsymbol{x}^{2}+\boldsymbol{y}^{2}\right) e^{-\boldsymbol{x}^{2}-y^{2}}$
10. Cobb-Douglas Production Function (1928): The total production (monetary value of all goods produced in one year) \boldsymbol{P} is given by

$$
P(L, K)=b L^{\alpha} K^{1-\alpha}
$$

where $\boldsymbol{L} \geq \mathbf{0}$ is the amount of labor and $\boldsymbol{K} \geq \mathbf{0}$ is the amount of capital, $\boldsymbol{\alpha}$ is a parameter between 0 and 1 , and $\boldsymbol{b}>\mathbf{0}$ is the total factor productivity. For example, they used the formula

$$
P(L, K)=1.01 L^{0.75} K^{0.25}
$$

to form a simple model of the American economy from 1899 - 1922.
11. Level Curves: The level curves of a function \boldsymbol{f} of two variables are the curves with equations $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{k}$ or simply $\boldsymbol{z}=\boldsymbol{k}$, where \boldsymbol{k} is constant.
12. $f(x, y)=\sin x+\sin y$
13. $f(x, y)=\left(x^{2}+y^{2}\right) e^{-x^{2}-y^{2}}$
14. Find the level curves for $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{x}^{2}+\boldsymbol{y}^{2}$.
15. Find the level curves for $f(x, y)=6-3 x-2 y$.
16. Find the domain of $f(x, y)=\frac{3 x+10}{x^{2}-y^{2}}$.
17. Find the domain of $f(x, y)=\ln \left(\frac{1}{x}-y\right)$.
18. Find the domain and range of $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})=\sin (\boldsymbol{x}+\boldsymbol{y})$.
19. Let $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{x} \ln \left(\boldsymbol{y}^{2}-\boldsymbol{x}\right)$. Sketch
(a) the domain of \boldsymbol{f};
(b) $\{(x, y): f(x, y)=0\}$;
(c) $\{(\boldsymbol{x}, \boldsymbol{y}): f(\boldsymbol{x}, \boldsymbol{y})>0\}$;
(d) $\{(x, y): f(x, y)<0\}$.

