1. Arc Length in \mathbb{R}^{2} :
2. Arc Length in \mathbb{R}^{3} :
3. Arc Length in \mathbb{R}^{3} : For the curve traced out by the endpoint of the vector-valued function $\mathbf{r}(t)=$ $\langle f(t), g(t), h(t)\rangle$, where $f, f^{\prime}, g, g^{\prime}, h, h^{\prime}$ are all continuous scalar functions for $t \in[a, b]$ and the curve is traversed exactly once as t increases from a to b, the arc length s is given by

$$
s=\int_{a}^{b} \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}+\left[h^{\prime}(t)\right]^{2}} d t
$$

4. Find the arc length of the circular helix traced out by the endpoint of the vector-valued function $\mathbf{r}(t)=\langle\cos t, \sin t, t\rangle$ from the point $(1,0,0)$ to the point $(1,0,2 \pi)$.
5. Find parametric equations for the intersection of the cone $z=\sqrt{x^{2}+y^{2}}$ and the plane $y+z=2$ and find the length of the arc in the first octant.
6. Consider a vector-valued function $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle$, where t represents time. Imagine an object moving along the curve traced out by the endpoint of this function. Recall that $\mathbf{r}^{\prime}(t)$ is a tangent vector pointing in the direction of the orientation of the curve.

Speed: $s^{\prime}(t)=\left\|\mathbf{r}^{\prime}(t)\right\|=v(t)$
Velocity: $\mathbf{v}(t)=\mathbf{r}^{\prime}(t)$
Acceleration: $\mathbf{a}(t)=\mathbf{v}^{\prime}(t)=\mathbf{r}^{\prime \prime}(t)$
7. Parametrizations: Compare $\mathbf{r}_{\mathbf{1}}(t)=\langle\cos t, \sin t\rangle, \mathbf{r}_{\mathbf{2}}(t)=\left\langle\cos \frac{t}{2}, \sin \frac{t}{2}\right\rangle$, and

$$
\mathbf{r}_{\mathbf{3}}(t)=\left\langle\cos \left(1+t^{2}\right), \sin \left(1+t^{2}\right)\right\rangle
$$

8. Arc Length Parametrization: Let $\mathbf{r}(t)$ be a parametrized curve, and set

$$
s(t)=\int_{a}^{t}\left\|\mathbf{r}^{\prime}(u)\right\| d u
$$

9. Find the arc length parametrization for the helix $\mathbf{r}(t)=\left\langle 20 t^{3 / 2}+12 t^{5 / 2}, 15 t^{2}+30 t\right\rangle$ for $t \geq 0$.
10. Find the arc length parametrization for the helix $\mathbf{r}(t)=\langle 2 \cos t, 2 \sin t, t\rangle$.
11. Explain why the curves $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ and $\mathbf{r}_{1}(t)=\langle k x(t / k), k y(t / k), k z(t / k)\rangle$ have the same speed, in the sense that the speed of the moving point \mathbf{r} at time t equals the speed of the moving point \mathbf{r}_{1} at time $k t$.
