1. Limits: For a vector-valued function $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle$, the limit of $\mathbf{r}(t)$ as t approaches a is given by

$$
\lim _{t \rightarrow a} \mathbf{r}(t)=\lim _{t \rightarrow a}\langle f(t), g(t), h(t)\rangle=\left\langle\lim _{t \rightarrow a} f(t), \lim _{t \rightarrow a} g(t), \lim _{t \rightarrow a} h(t)\right\rangle,
$$

provided all the limits exist. If any of the limits on the right-hand side above fail to exist, then $\lim _{t \rightarrow a} \mathbf{r}(t)$ does not exist.
2. Find $\lim _{t \rightarrow 1}\left\langle\frac{3}{t^{2}}, \frac{\ln t}{t^{2}-1}, \sin 2 t\right\rangle$.
3. Continuity: The vector-valued function $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle$ is continuous at $t=a$ whenever $\lim _{t \rightarrow a} \mathbf{r}(t)=\mathbf{r}(a)$.
4. Theorem on Continuity: The vector-valued function $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle$ is continuous at $t=a$ if and only if the component functions f, g, h are all continuous at $t=a$.
5. Determine the values of \mathbf{t} where the vector-valued function

$$
\mathbf{r}(t)=\left\langle\frac{1}{t} \sin 2 \pi t, \tan 2 \pi t, \cos 2 \pi t\right\rangle
$$

is continuous.
6. Derivative: The derivative $\mathbf{r}^{\prime}(t)$ of the vector-valued function $\mathbf{r}(t)$ is defined by

$$
\mathbf{r}^{\prime}(t)=\lim _{\Delta t \rightarrow 0} \frac{\mathbf{r}(t+\Delta t)-\mathbf{r}(t)}{\Delta t}
$$

provided the limit exists. If the limit does exist, say at $t=a$, then \mathbf{r} is differentiable at a.
7. Theorem on Differentiability: Let $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle$ and suppose the components f, g, h are all differentiable for some value of t. Then \mathbf{r} is also differentiable at t, and the derivative is given by

$$
\mathbf{r}^{\prime}(t)=\left\langle f^{\prime}(t), g^{\prime}(t), h^{\prime}(t)\right\rangle
$$

Proof:
8. Find the derivative of $\mathbf{r}(t)=\left\langle e^{t^{4}}, \sqrt{3 t^{2}+5}, 5 / t^{3}\right\rangle$.
9. Properties of the Derivative: Suppose $\mathbf{r}(t)$ and $\mathbf{s}(t)$ are differentiable vector-valued functions, $f(t)$ is a differentiable scalar function, and c is any scalar constant. Then
(a) $\frac{d}{d t}[\mathbf{r}(t)+\mathbf{s}(t)]=\mathbf{r}^{\prime}(t)+\mathbf{s}^{\prime}(t)$
(b) $\frac{d}{d t}[c \mathbf{r}(t)]=c \mathbf{r}^{\prime}(t)$
(c) $\frac{d}{d t}[f(t) \mathbf{r}(t)]=f(t) \mathbf{r}^{\prime}(t)+f^{\prime}(t) \mathbf{r}(t)$
(d) $\frac{d}{d t}[\mathbf{r}(t) \cdot \mathbf{s}(t)]=\mathbf{r}(t) \cdot \mathbf{s}^{\prime}(t)+\mathbf{r}^{\prime}(t) \cdot \mathbf{s}(t)$
(e) $\frac{d}{d t}[\mathbf{r}(t) \times \mathbf{s}(t)]=\mathbf{r}(t) \times \mathbf{s}^{\prime}(t)+\mathbf{r}^{\prime}(t) \times \mathbf{s}(t)$
(f) $\frac{d}{d t} \mathbf{r}(g(t))=g^{\prime}(t) \mathbf{r}^{\prime}(g(t))$.

Proof:
10. Tangent Vector: The tangent vector to a curve C traced out by the endpoint of the vector-valued function $\mathbf{r}(t)$ at $t=a$ is the vector $\mathbf{r}^{\prime}(a)$.
11. Tangent Line: The tangent line to the curve $\mathbf{r}(t)$ at t_{0} is parametrized as $\mathbf{L}(t)=\mathbf{r}\left(t_{0}\right)+t \mathbf{r}^{\prime}\left(t_{0}\right)$.
12. Sketch the curve traced out by the endpoint of $\mathbf{r}(t)=\langle\cos t, \sin t\rangle$ and plot position and tangent vectors at the points where $t=0, \pi / 2, \pi$.
13. Theorem: $\|\mathbf{r}(t)\|=$ constant if and only if $\mathbf{r}(t)$ and $\mathbf{r}^{\prime}(t)$ are orthogonal for all t. Proof:
14. Find the unit tangent vector for $\mathbf{r}(t)=\left\langle 6 t^{5}, 4 t^{3}, 2 t\right\rangle$ at the point with $t=1$.
15. Find the tangent line to the graph of $\mathbf{r}(t)=2 \cos \pi t \mathbf{i}+2 \sin \pi t \mathbf{j}+3 t \mathbf{k}$ when $t_{0}=1 / 3$.
16. The curves $\mathbf{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$ and $\mathbf{s}(t)=\langle\sin t, \sin 2 t, t\rangle$ intersect at the origin. To the nearest degree, find their angle of intersection.
17. Antiderivative: The vector-valued function $\mathbf{R}(t)$ is an antiderivative of the vector-valued function $\mathbf{r}(t)$ if $\mathbf{R}^{\prime}(t)=\mathbf{r}(t)$.
18. Indefinite Integral: If $\mathbf{R}(t)$ is an antiderivative of $\mathbf{r}(t)$, the indefinite integral of $\mathbf{r}(t)$ is given by

$$
\int \mathbf{r}(t) d t=\mathbf{R}(t)+\mathbf{c}
$$

where \mathbf{c} is an arbitrary constant vector.
19. Definite Integral: For the vector-valued function $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle$, the definite integral of $\mathbf{r}(t)$ is given by

$$
\int_{a}^{b} \mathbf{r}(t) d t=\int_{a}^{b}\langle f(t), g(t), h(t)\rangle d t=\left\langle\int_{a}^{b} f(t) d t, \int_{a}^{b} g(t) d t, \int_{a}^{b} h(t) d t\right\rangle .
$$

20. Fundamental Theorem of Calculus: If $\mathbf{R}(t)$ is an antiderivative of $\mathbf{r}(t)$ on $[a, b]$, then

$$
\int_{a}^{b} \mathbf{r}(t) d t=\mathbf{R}(b)-\mathbf{R}(a) .
$$

21. Evaluate $\int_{0}^{2} \mathbf{r}(t) d t$ for $\mathbf{r}(t)=\left\langle\frac{4}{t+1}, e^{t-2}, t e^{t}\right\rangle$.
