13.2 The Calculus of Vector-Valued Functions

1. Limits: For a vector-valued function $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$, the limit of $\mathbf{r}(t)$ as t approaches a is given by

$$\lim_{t \to a} \mathbf{r}(t) = \lim_{t \to a} \langle f(t), g(t), h(t) \rangle = \left\langle \lim_{t \to a} f(t), \lim_{t \to a} g(t), \lim_{t \to a} h(t) \right\rangle,$$

provided all the limits exist. If any of the limits on the right-hand side above fail to exist, then $\lim_{t\to a} \mathbf{r}(t)$ does not exist.

- 2. Find $\lim_{t\to 1} \left\langle \frac{3}{t^2}, \frac{\ln t}{t^2-1}, \sin 2t \right\rangle$.
- 3. Continuity: The vector-valued function $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$ is continuous at t = a whenever $\lim_{t \to a} \mathbf{r}(t) = \mathbf{r}(a)$.
- 4. Theorem on Continuity: The vector-valued function $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$ is continuous at t = a if and only if the component functions f, g, h are all continuous at t = a.
- 5. Determine the values of t where the vector-valued function

$$\mathbf{r}(t) = \left\langle \frac{1}{t} \sin 2\pi t, \tan 2\pi t, \cos 2\pi t \right\rangle$$

is continuous.

6. Derivative: The derivative $\mathbf{r}'(t)$ of the vector-valued function $\mathbf{r}(t)$ is defined by

$$\mathbf{r}'(t) = \lim_{\Delta t \to 0} \frac{\mathbf{r}(t + \Delta t) - \mathbf{r}(t)}{\Delta t}$$

provided the limit exists. If the limit does exist, say at t = a, then **r** is differentiable at a.

7. Theorem on Differentiability: Let $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$ and suppose the components f, g, h are all differentiable for some value of t. Then \mathbf{r} is also differentiable at t, and the derivative is given by

$$\mathbf{r}'(t) = \langle f'(t), g'(t), h'(t) \rangle.$$

Proof:

8. Fin	d the	derivative	of r (t) =	$\langle e^{t^4},$	$\sqrt{3t^2}$	$\overline{+5}$	$5/t^3\rangle$
--------	-------	------------	---------------	------	--------------------	---------------	-----------------	----------------

9. Properties of the Derivative: Suppose $\mathbf{r}(t)$ and $\mathbf{s}(t)$ are differentiable vector-valued functions, f(t) is a differentiable scalar function, and c is any scalar constant. Then

(a)
$$\frac{d}{dt} [\mathbf{r}(t) + \mathbf{s}(t)] = \mathbf{r}'(t) + \mathbf{s}'(t)$$

(b)
$$\frac{d}{dt}[c\mathbf{r}(t)] = c\mathbf{r}'(t)$$

(c)
$$\frac{d}{dt}[f(t)\mathbf{r}(t)] = f(t)\mathbf{r}'(t) + f'(t)\mathbf{r}(t)$$

(d)
$$\frac{d}{dt} [\mathbf{r}(t) \cdot \mathbf{s}(t)] = \mathbf{r}(t) \cdot \mathbf{s}'(t) + \mathbf{r}'(t) \cdot \mathbf{s}(t)$$

(e)
$$\frac{d}{dt} [\mathbf{r}(t) \times \mathbf{s}(t)] = \mathbf{r}(t) \times \mathbf{s}'(t) + \mathbf{r}'(t) \times \mathbf{s}(t)$$

(f)
$$\frac{d}{dt}\mathbf{r}(g(t)) = g'(t)\mathbf{r}'(g(t)).$$

Proof:

10. Tangent Vector: The tangent vector to a curve C traced out by the endpoint of the vector-valued function $\mathbf{r}(t)$ at t = a is the vector $\mathbf{r}'(a)$.

11. Tangent Line: The tangent line to the curve $\mathbf{r}(t)$ at t_0 is parametrized as $\mathbf{L}(t) = \mathbf{r}(t_0) + t\mathbf{r}'(t_0)$.

- 17. Antiderivative: The vector-valued function $\mathbf{R}(t)$ is an antiderivative of the vector-valued function $\mathbf{r}(t)$ if $\mathbf{R}'(t) = \mathbf{r}(t)$.
- 18. Indefinite Integral: If $\mathbf{R}(t)$ is an antiderivative of $\mathbf{r}(t)$, the indefinite integral of $\mathbf{r}(t)$ is given by

$$\int \mathbf{r}(t)dt = \mathbf{R}(t) + \mathbf{c},$$

where \mathbf{c} is an arbitrary constant vector.

19. Definite Integral: For the vector-valued function $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$, the definite integral of $\mathbf{r}(t)$ is given by

$$\int_a^b \mathbf{r}(t)dt = \int_a^b \langle f(t), g(t), h(t) \rangle dt = \left\langle \int_a^b f(t)dt, \int_a^b g(t)dt, \int_a^b h(t)dt \right\rangle.$$

20. Fundamental Theorem of Calculus: If $\mathbf{R}(t)$ is an antiderivative of $\mathbf{r}(t)$ on [a, b], then

$$\int_{a}^{b} \mathbf{r}(t)dt = \mathbf{R}(b) - \mathbf{R}(a).$$

21. Evaluate $\int_0^2 \mathbf{r}(t)dt$ for $\mathbf{r}(t) = \left\langle \frac{4}{t+1}, e^{t-2}, te^t \right\rangle$.