13.1 Vector-Valued Functions

1. Vector-Valued Function: A vector-valued function $\mathbf{r}(t)$ is a mapping from its domain $D \subset \mathbb{R}$ to its range $R \subset \mathbb{R}^3$ so that for each t in D we have $\mathbf{r}(t) = \mathbf{v}$ for exactly one vector $\mathbf{v} \in \mathbb{R}^3$. A vector-valued function can be written as

$$\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$$

using scalar functions f, g, h that are called component functions of \mathbf{r} .

2. Sketch the curve traced out by the endpoint of the two-dimensional vector-valued function

$$\mathbf{r}(t) = (t+1)\mathbf{i} + (t^2 - 2)\mathbf{j}.$$

3. Sketch the curve traced out by the endpoint of the vector-valued function

$$\mathbf{r}(t) = (4\cos t)\mathbf{i} - (3\sin t)\mathbf{j}, \quad t \in \mathbb{R}.$$

4. Sketch the curve traced out by the vector-valued function

$$\mathbf{r}(t) = (\sin t)\mathbf{i} - (3\cos t)\mathbf{j} + (2t)\mathbf{k}, \quad t \ge 0.$$

5. Sketch the curve traced out by the vector-valued function

$$\mathbf{r}(t) = \langle 3 + 2t, 5 - 3t, 2 - 4t \rangle, \quad t \in \mathbb{R}.$$

6. Match each of the vector-valued functions below with the corresponding computer-generated graph:

$$\mathbf{f}_1(t) = \langle \cos t, \ln t, \sin t \rangle \quad \mathbf{f}_2(t) = \langle t \cos t, t \sin t, t \rangle$$

$$\mathbf{f}_3(t) = \langle 3\sin 2t, t, t \rangle$$
 $\mathbf{f}_4(t) = \langle 5\sin^3 t, 5\cos^3 t, t \rangle$

7. Find parametric equations for the intersection of the cone $z = \sqrt{x^2 + y^2}$ and the plane y + z = 2.

