1. Vector-Valued Function: A vector-valued function $\mathbf{r}(t)$ is a mapping from its domain $D \subset \mathbb{R}$ to its range $R \subset \mathbb{R}^{3}$ so that for each $t$ in $D$ we have $\mathbf{r}(t)=\mathbf{v}$ for exactly one vector $\mathbf{v} \in \mathbb{R}^{3}$. A vector-valued function can be written as

$$
\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}
$$

using scalar functions $f, g, h$ that are called component functions of $\mathbf{r}$.
2. Sketch the curve traced out by the endpoint of the two-dimensional vector-valued function

$$
\mathbf{r}(t)=(t+1) \mathbf{i}+\left(t^{2}-2\right) \mathbf{j}
$$

3. Sketch the curve traced out by the endpoint of the vector-valued function

$$
\mathbf{r}(t)=(4 \cos t) \mathbf{i}-(3 \sin t) \mathbf{j}, \quad t \in \mathbb{R}
$$

4. Sketch the curve traced out by the vector-valued function

$$
\mathbf{r}(t)=(\sin t) \mathbf{i}-(3 \cos t) \mathbf{j}+(2 t) \mathbf{k}, \quad t \geq 0 .
$$

5. Sketch the curve traced out by the vector-valued function

$$
\mathbf{r}(t)=\langle 3+2 t, 5-3 t, 2-4 t\rangle, \quad t \in \mathbb{R} .
$$

6. Match each of the vector-valued functions below with the corresponding computer-generated graph:

$$
\begin{array}{ll}
\mathbf{f}_{1}(t)=\langle\cos t, \ln t, \sin t\rangle & \mathbf{f}_{2}(t)=\langle t \cos t, t \sin t, t\rangle \\
\mathbf{f}_{3}(t)=\langle 3 \sin 2 t, t, t\rangle & \mathbf{f}_{4}(t)=\left\langle 5 \sin ^{3} t, 5 \cos ^{3} t, t\right\rangle
\end{array}
$$

7. Find parametric equations for the intersection of the cone $z=\sqrt{x^{2}+y^{2}}$ and the plane $y+z=2$.
8. Parametrize the circle of radius 2 with center $(1,2,5)$ that lies in a plane parallel to the $y z$-plane.
9. Parametrize the intersection of the plane $y=\frac{1}{2}$ with the sphere $x^{2}+y^{2}+z^{2}=1$.
10. Sketch the graph of $\mathbf{r}(t)$ and indicate the direction of increasing $t$ for $\mathbf{r}(t)=(1+\cos t) \mathbf{i}+(3-\sin t) \mathbf{j}$, $0 \leq t \leq 2 \pi$.
11. Describe the curve $\mathbf{r}(t)=(t \sin t) \mathbf{i}+(t \cos t) \mathbf{j}+t^{2} \mathbf{k}$ and its projections onto the $x y-$ and $y z$-planes. Find a circular paraboloid on which the curve lies.
12. For the helix $\mathbf{r}(t)=\langle a \cos t, a \sin t$, $c t\rangle$, find $c>0$ so that the helix will make one complete turn in a distance of 3 units measured along the $z$-axis.
13. Show that the graph $\mathbf{r}(t)=\langle 3 \cos t, 3 \sin t, 3 \sin t\rangle$ lies on both a circular cylinder and a plane. What shape is it? Find the length of its major axis and its minor axis.
