12.7 Cylindrical and Spherical Coordinates

- Rectangular Coordinates $(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \&$ Cylindrical Coordinates $(\boldsymbol{r}, \boldsymbol{\theta}, \boldsymbol{z})$:
- Rectangular Coordinates $(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \&$ Spherical Coordinates $(\boldsymbol{\rho}, \boldsymbol{\theta}, \phi)$:

- Cylindrical Coordinates $(\boldsymbol{r}, \boldsymbol{\theta}, \boldsymbol{z}) \&$ Spherical Coordinates $(\boldsymbol{\rho}, \boldsymbol{\theta}, \phi)$:

1. Convert the point $(-1,1,-\sqrt{2})$ from rectangular to spherical coordinates.
2. Convert the point $(4,-4,4 \sqrt{6})$ from rectangular to spherical coordinates.
3. Convert the point $\left(\sqrt{6}, \frac{\pi}{4}, \sqrt{2}\right)$ from cylindrical to spherical coordinates.
4. Identify the surface $\boldsymbol{\rho}=\mathbf{6}$
5. Identify the surface $\phi=\frac{\pi}{12}$
6. Identify the surface $\boldsymbol{\theta}=\frac{\mathbf{3 \pi}}{\mathbf{5}}$
7. Identify the surface $\rho \sin \phi=2 \cos \theta$
8. Identify the surface $\rho=4 \boldsymbol{\operatorname { c o s }} \phi$
9. Find equations of the paraboloid $\boldsymbol{z}=\boldsymbol{x}^{2}+\boldsymbol{y}^{\mathbf{2}}$ in cylindrical and spherical coordinates.
10. Find an equation of the form $\rho=f(\theta, \phi)$ for the surface $\boldsymbol{x}^{2}=16-z^{2}$.
11. Describe the region in 3 -space: $\boldsymbol{r}^{2} \leq \boldsymbol{z} \leq 4$
12. Describe the region in 3-space: $\mathbf{1}<\boldsymbol{\rho} \leq \mathbf{3}$
