1. Planes in \mathbb{R}^{3} : The vector equation of a plane with direction vectors a and \mathbf{b} through the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ is given by
where $\mathbf{x}=\langle x, y, z\rangle$ and $\mathbf{p}_{0}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$.
2. Definition of Normal: A vector \mathbf{n} is normal to a plane \mathscr{P} if \mathbf{n} is orthogonal to every vector lying in the plane, that is to say, $\mathbf{n} \cdot \mathbf{a}=0$ for every vector a lying in plane \mathscr{P}.
3. Normal Form of a Plane: If $\mathbf{n}=\langle a, b, c\rangle$ is orthogonal to a plane with direction vectors a and \mathbf{b} through the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$, then
where $\mathbf{x}=\langle x, y, z\rangle$ and $\mathbf{p}_{0}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$.
4. Find an equation of the plane through the points $(-2,2,0),(-2,3,2)$, and $(1,2,2)$.
5. Find an equation of the plane through the point $(1,3,2)$ with normal vector $\langle 2,-1,5\rangle$.
6. Find an equation of the plane through the point $(4,-2,3)$ and parallel to the plane $3 x-7 z=12$.
7. Two planes are parallel if their normal vectors are parallel.
8. Using the distance formula in \mathbb{R}^{3}, find the equation of a sphere with radius r and center point $C(h, k, l)$
9. Show that $x^{2}+y^{2}+z^{2}-6 x+4 y-2 z=11$ represents a sphere, and find its center and radius.
10. Find an equation of the sphere that passes through the point $(4,3,-1)$ and has center $(3,8,1)$.
11. Find a sphere whose diameter has endpoints $(-1,2,1)$ and $(0,2,3)$.
12. Describe the set of all points whose coordinates satisfy

$$
x^{2}+y^{2}+z^{2}<8+2 x-8 z .
$$

