1.
$$2 \times 2$$
 Determinant: $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$.

$$2. \ 3 \times 3 \ \text{Determinant:} \ \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} a_1 - \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} b_1 + \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix} c_1.$$

3. Compute
$$\begin{vmatrix} -2 & -5 \\ 1 & 3 \end{vmatrix}$$
 and $\begin{vmatrix} 2 & 3 & -1 \\ 0 & 1 & 0 \\ -2 & -1 & 3 \end{vmatrix}$.

4. Cross Product: The cross product of two vectors $\mathbf{v} = \langle a_1, b_1, c_1 \rangle$ and $\mathbf{w} = \langle a_2, b_2, c_2 \rangle$ in \mathbb{R}^3 is the vector

$$\mathbf{v} \times \mathbf{w} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = \begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix} \mathbf{i} - \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix} \mathbf{j} + \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \mathbf{k}.$$

- 5. Compute $\langle 1, -3, 5 \rangle \times \langle -2, 4, 6 \rangle$.
- 6. Theorem: For any vector $\mathbf{v} \in \mathbb{R}^3$ we have $\mathbf{v} \times \mathbf{v} = \mathbf{0}$ and $\mathbf{v} \times \mathbf{0} = \mathbf{0}$.
- 7. Theorem: For $\mathbf{v}, \mathbf{w} \in \mathbb{R}^3$ the cross product $\mathbf{v} \times \mathbf{w}$ is orthogonal (normal) to both \mathbf{v} and \mathbf{w} .
- 8. Right-hand Rule: If you align the fingers of your right hand along the vector \mathbf{v} and bend your fingers around in the direction of rotation from \mathbf{v} toward \mathbf{w} through an angle of less than 180° , your thumb will point in the direction of $\mathbf{v} \times \mathbf{w}$. Note that $\mathbf{w} \times \mathbf{v}$ points in the opposite direction of $\mathbf{v} \times \mathbf{w}$.
- 9. Warning! $\mathbf{v} \times \mathbf{w} \neq \mathbf{w} \times \mathbf{v}$, and $(\mathbf{v} \times \mathbf{w}) \times \mathbf{u} \neq \mathbf{v} \times (\mathbf{w} \times \mathbf{u})$ in general.

- 10. Theorem: For any vectors $\mathbf{v}, \mathbf{w}, \mathbf{u} \in \mathbb{R}^3$ and any scalar λ , the following hold:
 - (a) $\mathbf{v} \times \mathbf{w} = -(\mathbf{w} \times \mathbf{v})$

Anticommutativity

- (b) $(\lambda \mathbf{v}) \times \mathbf{w} = \mathbf{v} \times (\lambda \mathbf{w}) = \lambda (\mathbf{v} \times \mathbf{w})$
- (c) $\mathbf{v} \times (\mathbf{w} + \mathbf{u}) = \mathbf{v} \times \mathbf{w} + \mathbf{v} \times \mathbf{u}$

Distributive law

(d) $(\mathbf{v} + \mathbf{w}) \times \mathbf{u} = \mathbf{v} \times \mathbf{u} + \mathbf{w} \times \mathbf{u}$

Distributive law

(e) $\mathbf{v} \cdot (\mathbf{w} \times \mathbf{u}) = (\mathbf{v} \times \mathbf{w}) \cdot \mathbf{u}$

Scalar triple product

(f) $\mathbf{v} \times (\mathbf{w} \times \mathbf{u}) = (\mathbf{v} \cdot \mathbf{u})\mathbf{w} - (\mathbf{v} \cdot \mathbf{w})\mathbf{u}$

Vector triple product

11. Theorem: For nonzero vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^3$, if θ is the angle between \mathbf{v} and \mathbf{w} and $0 \le \theta \le \pi$, then $\|\mathbf{v} \times \mathbf{w}\| = \|\mathbf{v}\| \|\mathbf{w}\| \sin \theta$.

- 12. Corollary: Two nonzero vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^3$ are parallel if and only if $\mathbf{v} \times \mathbf{w} = \vec{0}$.
- 13. Find $\|\mathbf{u} \times \mathbf{v}\|$ and determine whether $\mathbf{u} \times \mathbf{v}$ is directed into the page or out of the page.
- 14. Area of Parallelogram: The parallelogram formed by two nonparallel nonzero vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^3$ has an area given by the norm of their cross product: Area = $\|\mathbf{v} \times \mathbf{w}\|$.

- 16. Note: $\mathbf{i} \times \mathbf{j} = \mathbf{k}$, $\mathbf{j} \times \mathbf{k} = \mathbf{i}$, and $\mathbf{k} \times \mathbf{i} = \mathbf{j}$.
- 17. Volume of Parallelopiped and Scalar Triple Product: The parallelopiped formed by three non-coplanar vectors $\mathbf{v}, \mathbf{w}, \mathbf{u}$ has a volume given by: Volume = $|\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})|$.

18. Compute the volume of the parallelopiped with three adjacent edges formed by the vectors $\mathbf{v} = \langle 1, 2, 1 \rangle$, $\mathbf{w} = \langle 2, 1, -3 \rangle$ and $\mathbf{u} = \langle 2, -1, 3 \rangle$.

19. Torque $\vec{\tau}$: A force known as torque $\vec{\tau}$ is defined by $\vec{\tau} = \mathbf{r} \times \mathbf{F}$, where \mathbf{F} is the force applied to the end of a handle and \mathbf{r} is the position vector for the end of the handle. In particular,

$$\|\vec{\boldsymbol{\tau}}\| = \|\mathbf{r} \times \mathbf{F}\| = \|\mathbf{r}\| \|\mathbf{F}\| \sin \theta.$$

20. Compute the magnitude of the torque if a 40-newton force is applied to the end of a 0.25-meter wrench at an angle of 75°. Give your answer in joules, where 1 joule is 1 newton-meter.

Point-to-Line I and R in \mathbb{R}^3 is	Distance in \mathbb{R}^3 :	The distance	d from a point	Q to the line	through the points P
d =					

22. Compute the distance from Q(1,2,1) to the line through the points P(2,1,-3) and R(2,-1,3).