1. 2×2 Determinant: $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$.
2. 3×3 Determinant: $\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|=\left|\begin{array}{ll}b_{2} & c_{2} \\ b_{3} & c_{3}\end{array}\right| a_{1}-\left|\begin{array}{ll}a_{2} & c_{2} \\ a_{3} & c_{3}\end{array}\right| b_{1}+\left|\begin{array}{ll}a_{2} & b_{2} \\ a_{3} & b_{3}\end{array}\right| c_{1}$.
3. Compute $\left|\begin{array}{cc}-2 & -5 \\ 1 & 3\end{array}\right|$ and $\left|\begin{array}{ccc}2 & 3 & -1 \\ 0 & 1 & 0 \\ -2 & -1 & 3\end{array}\right|$.
4. Cross Product: The cross product of two vectors $\mathbf{v}=\left\langle a_{1}, b_{1}, c_{1}\right\rangle$ and $\mathbf{w}=\left\langle a_{2}, b_{2}, c_{2}\right\rangle$ in \mathbb{R}^{3} is the vector

$$
\mathbf{v} \times \mathbf{w}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right|=\left|\begin{array}{ll}
b_{1} & c_{1} \\
b_{2} & c_{2}
\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{2} & c_{2}
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right| \mathbf{k} .
$$

5. Compute $\langle 1,-3,5\rangle \times\langle-2,4,6\rangle$.
6. Theorem: For any vector $\mathbf{v} \in \mathbb{R}^{3}$ we have $\mathbf{v} \times \mathbf{v}=\mathbf{0}$ and $\mathbf{v} \times \mathbf{0}=\mathbf{0}$.
7. Theorem: For $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}$ the cross product $\mathbf{v} \times \mathbf{w}$ is orthogonal (normal) to both \mathbf{v} and \mathbf{w}.
8. Right-hand Rule: If you align the fingers of your right hand along the vector \mathbf{v} and bend your fingers around in the direction of rotation from \mathbf{v} toward \mathbf{w} through an angle of less than 180°, your thumb will point in the direction of $\mathbf{v} \times \mathbf{w}$. Note that $\mathbf{w} \times \mathbf{v}$ points in the opposite direction of $\mathbf{v} \times \mathbf{w}$.
9. Warning! $\mathbf{v} \times \mathbf{w} \neq \mathbf{w} \times \mathbf{v}$, and $(\mathbf{v} \times \mathbf{w}) \times \mathbf{u} \neq \mathbf{v} \times(\mathbf{w} \times \mathbf{u})$ in general.
10. Theorem: For any vectors $\mathbf{v}, \mathbf{w}, \mathbf{u} \in \mathbb{R}^{3}$ and any scalar λ, the following hold:
(a) $\mathbf{v} \times \mathbf{w}=-(\mathbf{w} \times \mathbf{v})$ Anticommutativity
(b) $(\lambda \mathbf{v}) \times \mathbf{w}=\mathbf{v} \times(\lambda \mathbf{w})=\lambda(\mathbf{v} \times \mathbf{w})$
(c) $\mathbf{v} \times(\mathbf{w}+\mathbf{u})=\mathbf{v} \times \mathbf{w}+\mathbf{v} \times \mathbf{u}$
(d) $(\mathbf{v}+\mathbf{w}) \times \mathbf{u}=\mathbf{v} \times \mathbf{u}+\mathbf{w} \times \mathbf{u}$
(e) $\mathbf{v} \cdot(\mathbf{w} \times \mathbf{u})=(\mathbf{v} \times \mathbf{w}) \cdot \mathbf{u}$
(f) $\mathbf{v} \times(\mathbf{w} \times \mathbf{u})=(\mathbf{v} \cdot \mathbf{u}) \mathbf{w}-(\mathbf{v} \cdot \mathbf{w}) \mathbf{u}$

Distributive law
Distributive law
Scalar triple product Vector triple product
11. Theorem: For nonzero vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}$, if θ is the angle between \mathbf{v} and \mathbf{w} and $0 \leq \theta \leq \pi$, then

$$
\|\mathbf{v} \times \mathbf{w}\|=\|\mathbf{v}\|\|\mathbf{w}\| \sin \theta
$$

12. Corollary: Two nonzero vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}$ are parallel if and only if $\mathbf{v} \times \mathbf{w}=\overrightarrow{0}$.
13. Find $\|\mathbf{u} \times \mathbf{v}\|$ and determine whether $\mathbf{u} \times \mathbf{v}$ is directed into the page or out of the page.
14. Area of Parallelogram: The parallelogram formed by two nonparallel nonzero vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}$ has an area given by the norm of their cross product: Area $=\|\mathbf{v} \times \mathbf{w}\|$.
15. Compute the area of the parallelogram formed by vectors $\langle 1,2,3\rangle$ and $\langle 4,5,6\rangle$.
16. Note: $\mathbf{i} \times \mathbf{j}=\mathbf{k}, \mathbf{j} \times \mathbf{k}=\mathbf{i}$, and $\mathbf{k} \times \mathbf{i}=\mathbf{j}$.
17. Volume of Parallelopiped and Scalar Triple Product: The parallelopiped formed by three noncoplanar vectors $\mathbf{v}, \mathbf{w}, \mathbf{u}$ has a volume given by: Volume $=|\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})|$.
18. Compute the volume of the parallelopiped with three adjacent edges formed by the vectors $\mathbf{v}=$ $\langle 1,2,1\rangle, \mathbf{w}=\langle 2,1,-3\rangle$ and $\mathbf{u}=\langle 2,-1,3\rangle$.
19. Torque $\overrightarrow{\boldsymbol{\tau}}$: A force known as torque $\overrightarrow{\boldsymbol{\tau}}$ is defined by $\overrightarrow{\boldsymbol{\tau}}=\mathbf{r} \times \mathbf{F}$, where \mathbf{F} is the force applied to the end of a handle and \mathbf{r} is the position vector for the end of the handle. In particular,

$$
\|\overrightarrow{\boldsymbol{\tau}}\|=\|\mathbf{r} \times \mathbf{F}\|=\|\mathbf{r}\|\|\mathbf{F}\| \sin \theta
$$

20. Compute the magnitude of the torque if a 40 -newton force is applied to the end of a 0.25 -meter wrench at an angle of 75°. Give your answer in joules, where 1 joule is 1 newton-meter.
21. Point-to-Line Distance in \mathbb{R}^{3} : The distance d from a point Q to the line through the points P and R in \mathbb{R}^{3} is

$$
d=
$$

22. Compute the distance from $Q(1,2,1)$ to the line through the points $P(2,1,-3)$ and $R(2,-1,3)$.
