12.3 The Dot Product

1. Dot Product: The dot product of two vectors $\mathbf{v}=\left\langle a_{1}, b_{1}\right\rangle$ and $\mathbf{w}=\left\langle a_{2}, b_{2}\right\rangle$ in \mathbb{R}^{2} is the scalar

$$
\mathbf{v} \cdot \mathbf{w}=
$$

Similarly, the dot product of two vectors $\mathbf{v}=\left\langle a_{1}, b_{1}, c_{1}\right\rangle$ and $\mathbf{w}=\left\langle a_{2}, b_{2}, c_{2}\right\rangle$ in \mathbb{R}^{3} is

$$
\mathbf{v} \cdot \mathbf{w}=
$$

2. Compute the dot product $\mathbf{v} \cdot \mathbf{w}$ for the following:
(a) $\mathbf{v}=\langle 3,-2,-4\rangle$ and $\mathbf{w}=\langle 2,1,5\rangle$;
(b) $\mathbf{v}=2 \mathbf{i}-5 \mathbf{j}+\mathbf{k}$ and $\mathbf{w}=6 \mathbf{i}+3 \mathbf{j}-2 \mathbf{k}$.
3. Theorem: For vectors \mathbf{v}, \mathbf{w}, and \mathbf{u} and any scalar λ the following hold:
(a) $\mathbf{v} \cdot \mathbf{w}=\mathbf{w} \cdot \mathbf{v}$ Commutative law
(b) $\mathbf{v} \cdot(\mathbf{w}+\mathbf{u})=\mathbf{v} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{u}$
(c) $(\lambda \mathbf{v}) \cdot \mathbf{w}=\lambda(\mathbf{v} \cdot \mathbf{w})=\mathbf{v} \cdot(\lambda \mathbf{w})$
(d) $\mathbf{0} \cdot \mathbf{w}=0$
(e) $\mathbf{v} \cdot \mathbf{v}=\|\mathbf{v}\|^{2}$.

Proof:
4. Angle between vectors: For two nonzero vectors \mathbf{v} and \mathbf{w}, define the angle $\theta, 0 \leq \theta \leq \pi$, to be the smaller angle between the vectors.
5. Theorem: Let θ be the angle between nonzero vectors \mathbf{v} and \mathbf{w}. Then

$$
\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta
$$

Proof:
6. Compute the angle between the vectors $\mathbf{v}=\langle 2,3,5\rangle$ and $\mathbf{w}=\langle-4,1,-1\rangle$.
7. Orthogonal: Two vectors \mathbf{v} and \mathbf{w} are orthogonal iff $\mathbf{v} \cdot \mathbf{w}=0$.
8. Find all values of λ such that $\mathbf{v}=\langle\lambda,-2,3\rangle$ and $\mathbf{w}=\langle\lambda, \lambda,-5\rangle$ are orthogonal.
9. The angle between \mathbf{v} and \mathbf{w} is acute if $\mathbf{v} \cdot \mathbf{w}>0$ and obtuse if $\mathbf{v} \cdot \mathbf{w}<0$.
10. Find a vector orthogonal to $4 \mathbf{i}-\mathbf{j}-2 \mathbf{k}$.
11. Component of \mathbf{v} along \mathbf{w} : The component of \mathbf{v} along \mathbf{w} is the scalar

$$
\operatorname{comp}_{\mathbf{w}} \mathbf{v}=\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{w}\|}=\mathbf{v} \cdot \mathbf{e}_{\mathbf{w}}=\|\mathbf{v}\| \cos \theta
$$

12. Projection of \mathbf{v} onto \mathbf{w} : The projection of \mathbf{v} onto \mathbf{w} is the vector

$$
\mathbf{v}_{\|}=\operatorname{proj}_{\mathbf{w}} \mathbf{v}=\left(\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{w}\|^{2}}\right) \mathbf{w}=\left(\mathbf{v} \cdot \mathbf{e}_{\mathbf{w}}\right) \mathbf{e}_{\mathbf{w}}=\left(\frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}\right) \mathbf{w} .
$$

13. Compute $\operatorname{comp}_{\mathbf{w}} \mathbf{v}$ and $\operatorname{proj}_{\mathbf{w}} \mathbf{v}$ for $\mathbf{v}=\langle 2,-1,3\rangle$ and $\mathbf{w}=\langle 1,2,2\rangle$.
14. Prove that $\mathbf{v} \cdot \mathbf{w}=\frac{1}{4}\|\mathbf{v}+\mathbf{w}\|^{2}-\frac{1}{4}\|\mathbf{v}-\mathbf{w}\|^{2}$.
