1. Dot Product: The dot product of two vectors $\mathbf{v} = \langle a_1, b_1 \rangle$ and $\mathbf{w} = \langle a_2, b_2 \rangle$ in \mathbb{R}^2 is the scalar

$$\mathbf{v} \cdot \mathbf{w} =$$

Similarly, the dot product of two vectors $\mathbf{v} = \langle a_1, b_1, c_1 \rangle$ and $\mathbf{w} = \langle a_2, b_2, c_2 \rangle$ in \mathbb{R}^3 is

$$\mathbf{v} \cdot \mathbf{w} =$$

- 2. Compute the dot product $\mathbf{v} \cdot \mathbf{w}$ for the following:
 - (a) $\mathbf{v} = \langle 3, -2, -4 \rangle$ and $\mathbf{w} = \langle 2, 1, 5 \rangle$;
 - (b) $\mathbf{v} = 2\mathbf{i} 5\mathbf{j} + \mathbf{k}$ and $\mathbf{w} = 6\mathbf{i} + 3\mathbf{j} 2\mathbf{k}$.
- 3. Theorem: For vectors \mathbf{v} , \mathbf{w} , and \mathbf{u} and any scalar λ the following hold:
 - (a) $\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}$

Commutative law

(b) $\mathbf{v} \cdot (\mathbf{w} + \mathbf{u}) = \mathbf{v} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{u}$

Distributive law

- (c) $(\lambda \mathbf{v}) \cdot \mathbf{w} = \lambda (\mathbf{v} \cdot \mathbf{w}) = \mathbf{v} \cdot (\lambda \mathbf{w})$
- (d) $\mathbf{0} \cdot \mathbf{w} = 0$
- (e) $\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2$.

Proof:

- 4. Angle between vectors: For two nonzero vectors \mathbf{v} and \mathbf{w} , define the angle θ , $0 \le \theta \le \pi$, to be the smaller angle between the vectors.
- 5. Theorem: Let θ be the angle between nonzero vectors ${\bf v}$ and ${\bf w}$. Then

$$\mathbf{v} \cdot \mathbf{w} = \|\mathbf{v}\| \|\mathbf{w}\| \cos \theta.$$

Proof:

6. Compute the angle between the vectors $\mathbf{v} = \langle 2, 3, 5 \rangle$ and $\mathbf{w} = \langle -4, 1, -1 \rangle$.

- 7. Orthogonal: Two vectors \mathbf{v} and \mathbf{w} are orthogonal iff $\mathbf{v} \cdot \mathbf{w} = 0$.
- 8. Find all values of λ such that $\mathbf{v} = \langle \lambda, -2, 3 \rangle$ and $\mathbf{w} = \langle \lambda, \lambda, -5 \rangle$ are orthogonal.
- 9. The angle between \mathbf{v} and \mathbf{w} is acute if $\mathbf{v} \cdot \mathbf{w} > 0$ and obtuse if $\mathbf{v} \cdot \mathbf{w} < 0$.
- 10. Find a vector orthogonal to $4\mathbf{i} \mathbf{j} 2\mathbf{k}$.
- 11. Component of \mathbf{v} along \mathbf{w} : The component of \mathbf{v} along \mathbf{w} is the scalar

$$comp_{\mathbf{w}}\mathbf{v} = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{w}\|} = \mathbf{v} \cdot \mathbf{e}_{\mathbf{w}} = \|\mathbf{v}\| \cos \theta.$$

12. Projection of **v** onto **w**: The projection of **v** onto **w** is the vector

$$\mathbf{v}_{\parallel} = \mathrm{proj}_{\mathbf{w}} \mathbf{v} = \left(\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{w}\|^2}\right) \mathbf{w} = \left(\mathbf{v} \cdot \mathbf{e}_{\mathbf{w}}\right) \mathbf{e}_{\mathbf{w}} = \left(\frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}\right) \mathbf{w}.$$

- 13. Compute $comp_{\mathbf{w}}\mathbf{v}$ and $proj_{\mathbf{w}}\mathbf{v}$ for $\mathbf{v} = \langle 2, -1, 3 \rangle$ and $\mathbf{w} = \langle 1, 2, 2 \rangle$.
- 14. Prove that $\mathbf{v} \cdot \mathbf{w} = \frac{1}{4} ||\mathbf{v} + \mathbf{w}||^2 \frac{1}{4} ||\mathbf{v} \mathbf{w}||^2$.