12.2 Vectors in Space

1. We consider vectors in 3-dimensional Euclidean space \mathbb{R}^{3}, usually consisting of three rectangular coordinate axes x, y, z that intersect at the origin point $O=(0,0,0)$.
2. Plotting (a, b, c) for $a, b, c>0$: Move a units along the x-axis from the origin O to the point $(a, 0,0)$, then parallel to the y-axis b units to the point $(a, b, 0)$, then c units parallel to the z-axis to the point (a, b, c). Move similarly for other coordinates.
3. Plot the points $(1,-2,-3)$ and $(-3,1,2)$.
4. Distance: The distance between $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ is given by

$$
d\left\{P_{1}, P_{2}\right\}=
$$

5. A position vector begins at the origin O and terminates at some point $A(a, b, c)$. Let $\mathbf{v}=\overrightarrow{O A}=$ $\langle a, b, c\rangle$. We call a, b and c the components of \mathbf{v}. The magnitude or norm or length of \mathbf{v} is

$$
\|\mathbf{v}\|=
$$

The vector with initial point $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ is equivalent to the position vector

$$
\overrightarrow{P Q}=
$$

6. Vector addition and subtraction: For two position vectors $\mathbf{v}=\left\langle a_{1}, b_{1}, c_{1}\right\rangle$ and $\mathbf{w}=\left\langle a_{2}, b_{2}, c_{2}\right\rangle$ we have

$$
\mathbf{v}+\mathbf{w}=
$$

This is componentwise addition.
7. Scalar multiplication: For any scalar λ and position vector $\mathbf{v}=\left\langle a_{1}, b_{1}, c_{1}\right\rangle$, we have

$$
\lambda \mathbf{v}=
$$

Note that $\|\lambda \mathbf{v}\|=$
8. Equality of two position vectors $\mathbf{v}=\left\langle a_{1}, b_{1}, c_{1}\right\rangle$ and $\mathbf{w}=\left\langle a_{2}, b_{2}, c_{2}\right\rangle$:
9. Parallel: Two vectors \mathbf{v} and \mathbf{w} are parallel if...
10. Standard basis vectors: For any position vector $\mathbf{v}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ we have

$$
\mathbf{v}=
$$

Define the standard basis vectors \mathbf{i}, \mathbf{j}, and \mathbf{k} by

$$
\mathbf{i}=\langle 1,0,0\rangle, \quad \mathbf{j}=\langle 0,1,0\rangle, \quad \text { and } \quad \mathbf{k}=\langle 0,0,1\rangle .
$$

Then $\mathbf{v}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$.
11. Unit vectors:
12. Sphere: A sphere is the set of all points at a constant distance (radius) from a given point (center). Therefore,
describes sphere with points (x, y, z) centered at (a, b, c) and radius r.
13. Parametric Equation of a Line in \mathbb{R}^{3} :
14. If ℓ is the line parametrized by $\mathbf{r}(t)=\langle 5-3 t,-2+t, 1+9 t\rangle$, find the equation of the line through $P(-6,4,-3)$ parallel to ℓ.
15. Find the distance between $(-1,0,2)$ and $(1,2,3)$.
16. Compute $\mathbf{v}+\mathbf{w}, 2 \mathbf{v}-3 \mathbf{w}$, and $\|3 \mathbf{v}+\mathbf{w}\|$ for $\mathbf{v}=\langle-1,0,2\rangle$ and $\mathbf{w}=\langle 1,2,3\rangle$.
17. Find a unit vector in the direction of $2 \mathbf{i}-\mathbf{j}+3 \mathbf{k}$.
18. Find a vector with magnitude 6 in the direction of $\langle 2,2,-1\rangle$.
19. Identify the geometric shape described by the equation

$$
x^{2}+2 x+y^{2}+z^{2}-4 z=0 .
$$

20. The thrust of an airplane's engine produces a speed of 966 kph in still air. The plane points in the direction of $\langle 2,2,1\rangle$, and the wind is given by $\langle 16,-32,0\rangle \mathrm{kph}$. Find the velocity vector of the plane with respect to the ground and find the speed.
21. Are the points $P(2,3,1), Q(4,2,2)$, and $R(8,0,4)$ on the same line?
22. Find a parametrization of the line through $P(3,1,-2)$ and $Q(-2,7,-4)$.
23. Do the lines $\ell_{1}=\langle-2,5,1\rangle+t\langle 3,-4,2\rangle$ and $\ell_{2}=\langle 1,3,-4\rangle+t\langle-1,2,-3\rangle$ intersect?
24. Describe the surface $x+y=2$.
25. Show that the triangle with vertices $P(-2,4,0), Q(1,2,-1), R(-1,1,2)$ is equilateral.
26. Find the distance from $(3,7,-5)$ to
(a) $x y$-plane
(b) $y z$-plane
(c) $x z$-plane
(d) x-axis
(e) y-axis
(f) z-axis
27. For a sphere centered at $(-1,1,2)$ with radius 3 , find the point on the sphere
(a) closest to the origin
(b) farthest from the origin
