12.2 Vectors in Space

- 1. We consider vectors in 3-dimensional Euclidean space \mathbb{R}^3 , usually consisting of three rectangular coordinate axes x, y, z that intersect at the origin point O = (0, 0, 0).
- 2. Plotting (a, b, c) for a, b, c > 0: Move a units along the x-axis from the origin O to the point (a, 0, 0), then parallel to the y-axis b units to the point (a, b, 0), then c units parallel to the z-axis to the point (a, b, c). Move similarly for other coordinates.
- 3. Plot the points (1, -2, -3) and (-3, 1, 2).
- 4. Distance: The distance between $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ is given by

$$d\{P_1, P_2\} =$$

5. A position vector begins at the origin O and terminates at some point A(a, b, c). Let $\mathbf{v} = \overrightarrow{OA} = \langle a, b, c \rangle$. We call a, b and c the components of \mathbf{v} . The magnitude or norm or length of \mathbf{v} is

$$\|\mathbf{v}\| =$$

The vector with initial point $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ is equivalent to the position vector

$$\overrightarrow{PQ} =$$

6. Vector addition and subtraction: For two position vectors $\mathbf{v} = \langle a_1, b_1, c_1 \rangle$ and $\mathbf{w} = \langle a_2, b_2, c_2 \rangle$ we have

$$\mathbf{v} + \mathbf{w} =$$

This is componentwise addition.

7. Scalar multiplication: For any scalar λ and position vector $\mathbf{v} = \langle a_1, b_1, c_1 \rangle$, we have

$$\lambda \mathbf{v} =$$

Note that $\|\lambda \mathbf{v}\| =$.

- 8. Equality of two position vectors $\mathbf{v} = \langle a_1, b_1, c_1 \rangle$ and $\mathbf{w} = \langle a_2, b_2, c_2 \rangle$:
- 9. Parallel: Two vectors ${\bf v}$ and ${\bf w}$ are parallel if...

10.	Standard basis vectors: For any position vector $\mathbf{v} = \langle a_1, a_2, a_3 \rangle$ we have
	$\mathbf{v} =$
	Define the standard basis vectors \mathbf{i} , \mathbf{j} , and \mathbf{k} by
	$\mathbf{i} = \langle 1, 0, 0 \rangle, \mathbf{j} = \langle 0, 1, 0 \rangle, \text{and} \mathbf{k} = \langle 0, 0, 1 \rangle.$
	Then $\mathbf{v} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$.
11.	Unit vectors:
12.	Sphere: A sphere is the set of all points at a constant distance (radius) from a given point (center). Therefore,
	describes sphere with points (x, y, z) centered at (a, b, c) and radius r .
13.	Parametric Equation of a Line in \mathbb{R}^3 :
14.	If ℓ is the line parametrized by $\mathbf{r}(t) = \langle 5-3t, -2+t, 1+9t \rangle$, find the equation of the line through $P(-6,4,-3)$ parallel to ℓ .
1 5	F' 141 . 1'4 1 (1 0 0) 1 (1 0 0)
10.	Find the distance between $(-1,0,2)$ and $(1,2,3)$.
16.	Compute $\mathbf{v} + \mathbf{w}$, $2\mathbf{v} - 3\mathbf{w}$, and $ 3\mathbf{v} + \mathbf{w} $ for $\mathbf{v} = \langle -1, 0, 2 \rangle$ and $\mathbf{w} = \langle 1, 2, 3 \rangle$.

17. Find a unit vector in the direction of $2\mathbf{i} - \mathbf{j} + 3\mathbf{k}$.

18. Find a vector with magnitude 6 in the direction of $\langle 2, 2, -1 \rangle$.

19.	Identify	the	geometric sh	ape desc	cribed b	ov the	equation

$$x^2 + 2x + y^2 + z^2 - 4z = 0.$$

20. The thrust of an airplane's engine produces a speed of 966 kph in still air. The plane points in the direction of (2,2,1), and the wind is given by (16,-32,0) kph. Find the velocity vector of the plane with respect to the ground and find the speed.

21. Are the points P(2,3,1), Q(4,2,2), and R(8,0,4) on the same line?

22. Find a parametrization of the line through P(3,1,-2) and Q(-2,7,-4).

00	D 41 1: 0	/ 0 = 1\ , ,	/2 / 2\ 1.0	/1 9 4\	/ 1 0 0\ : 1 12
23.	Do the lines $\ell_1 = \ell_2$	$\langle -2, 5, 1 \rangle + t$	$\langle 3, -4, 2 \rangle$ and ℓ_2	$t = \langle 1, 3, -4 \rangle + t$	$\langle -1, 2, -3 \rangle$ intersect?

24. Describe the surface x + y = 2.

25. Show that the triangle with vertices P(-2,4,0), Q(1,2,-1), R(-1,1,2) is equilateral.

26. Find the distance from (3, 7, -5) to

- (a) xy-plane
- (b) yz-plane
- (c) xz-plane
- (d) x-axis
- (e) y-axis
- (f) z-axis

27. For a sphere centered at (-1,1,2) with radius 3, find the point on the sphere

- (a) closest to the origin
- (b) farthest from the origin