12.1 Vectors in the Plane

- 1. A vector is any quantity with a length (magnitude, norm) and a direction. We typically draw an arrow to represent a vector. For example, let \mathbf{v} be the vector from initial point A to terminal point B. Then $\mathbf{v} = \overrightarrow{AB}$, and the magnitude is denoted $\|\mathbf{v}\| = \|\overrightarrow{AB}\|$.
- 2. Since the velocity of an object in motion is the speed of the object in a particular direction, velocity is an example of a vector, where speed=magnitude in this case.

We could also interpret \overrightarrow{AB} as representing the path of a moving object, moving from initial point A to terminal point B, with $\|\overrightarrow{AB}\|$ representing the total distance.

- 3. Equivalent vectors: same magnitude, same direction.
- 4. Vector addition
- 5. Scalar multiplication
- 6. A position vector begins at the origin O and terminates at some point P(a, b). Let $\mathbf{v} = \overrightarrow{OP} = \langle a, b \rangle$. We call a and b the components of \mathbf{v} . Clearly the magnitude or norm of \mathbf{v} is

$$\|\mathbf{v}\| = \sqrt{a^2 + b^2}$$

by the Pythagorean theorem.

- 7. For two position vectors $\mathbf{v} = \langle v_1, v_2 \rangle$ and $\mathbf{w} = \langle w_1, w_2 \rangle$ we have $\mathbf{v} = \mathbf{w}$ if and only if $v_1 = w_1$ and $v_2 = w_2$. Componentwise equality.
- 8. Finding a position vector: Find the vector with
 - (a) initial point A(-3,2) and terminal point B(1,4);
 - (b) initial point $A(v_1, v_2)$ and terminal point $B(w_1, w_2)$.
 - (c) Find $\|\overrightarrow{AB}\|$.
- 9. Vector addition and subtraction: For two position vectors $\mathbf{v} = \langle v_1, v_2 \rangle$ and $\mathbf{w} = \langle w_1, w_2 \rangle$ we have

$$\mathbf{v} + \mathbf{w} = \langle v_1, v_2 \rangle + \langle w_1, w_2 \rangle = \langle v_1 + w_1, v_2 + w_2 \rangle.$$

Componentwise addition. Similarly, subtraction is given by

$$\mathbf{v} - \mathbf{w} = \langle v_1, v_2 \rangle - \langle w_1, w_2 \rangle = \langle v_1 - w_1, v_2 - w_2 \rangle.$$

- 10. Scalar multiplication: For scalar λ and position vector $\mathbf{v} = \langle v_1, v_2 \rangle$, we have $\lambda \mathbf{v} = \lambda \langle v_1, v_2 \rangle = \langle \lambda v_1, \lambda v_2 \rangle$. Note that $\|\lambda \mathbf{v}\| = |\lambda| \|\mathbf{v}\|$.
- 11. Parallel: Two vectors \mathbf{v} and \mathbf{w} are parallel if there exists a scalar $\lambda \neq 0$ such that $\mathbf{w} = \lambda \mathbf{v}$. Thus two vectors are parallel if they point in the same or opposite direction.
- 12. For vectors $\mathbf{v} = \langle 4, -2 \rangle$ and $\mathbf{w} = \langle -3, 5 \rangle$, compute
 - (a) $\mathbf{v} + \mathbf{w}$
 - (b) $\frac{1}{2}$ **v** + 10**w**
 - (c) 5v 3w
 - (d) $\|-2\mathbf{w}\|$
- 13. Are $\mathbf{v} = \langle -4, 6 \rangle$ and $\mathbf{w} = \langle 3, -5 \rangle$ parallel? Pick x so that \mathbf{v} and $\mathbf{u} = \langle 3, x \rangle$ are parallel.

14. Standard basis vectors: For any position vector $\mathbf{v} = \langle v_1, v_2 \rangle$ we have

$$\mathbf{v} = v_1 \langle 1, 0 \rangle + v_2 \langle 0, 1 \rangle.$$

Define the standard basis vectors \mathbf{i} and \mathbf{j} by

$$\mathbf{i} = \langle 1, 0 \rangle$$
 and $\mathbf{j} = \langle 0, 1 \rangle$.

Then $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j}$.

15. Algebraic Properties: For any vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} and real scalars c and d:

- (a) $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$ Commutativity
- (b) $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$ Associativity
- (c) $\mathbf{v} + \mathbf{0} = \mathbf{v}$ Additive Identity
- (d) $\mathbf{v} + (-\mathbf{v}) = \mathbf{v} \mathbf{v} = \mathbf{0}$ Additive Inverse
- (e) $c(\mathbf{v} + \mathbf{w}) = c\mathbf{v} + c\mathbf{w}$ Distributive law
- (f) $(c+d)\mathbf{v} = c\mathbf{v} + d\mathbf{v}$ Distributive law
- (g) $(1)\mathbf{v} = \mathbf{v}$ Multiplication by 1
- (h) $(0)\mathbf{v} = \mathbf{0}$ Multiplication by 0

16. Unit vectors: A vector with length 1 is called a unit vector. For any nonzero position vector $\mathbf{v} = \langle v_1, v_2 \rangle$, a unit vector pointing in the same direction as \mathbf{v} is

$$\mathbf{e}_{\mathbf{v}} = \frac{1}{\|\mathbf{v}\|} \mathbf{v}.$$

17. Find a unit vector in the same direction as $\mathbf{v} = \langle -12, 5 \rangle$.

18. Linear combination: $c\mathbf{v} + d\mathbf{w}$

If $\mathbf{v} = 5\mathbf{i} + \mathbf{j}$ and $\mathbf{w} = 4\mathbf{i} - 7\mathbf{j}$, express $3\mathbf{v} - 2\mathbf{w}$ as a linear combination of \mathbf{i} and \mathbf{j} .

19. An airplane has an airspeed of 650 kilometers per hour (kph). Suppose the wind velocity is given by the vector $\mathbf{w} = \langle 32, 48 \rangle$. In what direction should the airplane head in order to fly due west, in other words in the direction of $-\mathbf{i}$?

20. Two forces $\mathbf{F_1}$ and $\mathbf{F_2}$ with magnitudes 10 lbs and 12 lbs, respectively, act on an object at a point P. Find the resultant force \mathbf{F} , its magnitude, and its angle. (See diagram)