12.1 Vectors in the Plane

1. A vector is any quantity with a length (magnitude, norm) and a direction. We typically draw an arrow to represent a vector. For example, let \mathbf{v} be the vector from initial point A to terminal point B. Then $\mathbf{v}=\overrightarrow{A B}$, and the magnitude is denoted $\|\mathbf{v}\|=\|\overrightarrow{A B}\|$.
2. Since the velocity of an object in motion is the speed of the object in a particular direction, velocity is an example of a vector, where speed=magnitude in this case.
We could also interpret $\overrightarrow{A B}$ as representing the path of a moving object, moving from initial point A to terminal point B, with $\|\overrightarrow{A B}\|$ representing the total distance.
3. Equivalent vectors: same magnitude, same direction.
4. Vector addition
5. Scalar multiplication
6. A position vector begins at the origin O and terminates at some point $P(a, b)$. Let $\mathbf{v}=\overrightarrow{O P}=$ $\langle a, b\rangle$. We call a and b the components of \mathbf{v}. Clearly the magnitude or norm of \mathbf{v} is

$$
\|\mathbf{v}\|=\sqrt{a^{2}+b^{2}}
$$

by the Pythagorean theorem.
7. For two position vectors $\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$ and $\mathbf{w}=\left\langle w_{1}, w_{2}\right\rangle$ we have $\mathbf{v}=\mathbf{w}$ if and only if $v_{1}=w_{1}$ and $v_{2}=w_{2}$. Componentwise equality.
8. Finding a position vector: Find the vector with
(a) initial point $A(-3,2)$ and terminal point $B(1,4)$;
(b) initial point $A\left(v_{1}, v_{2}\right)$ and terminal point $B\left(w_{1}, w_{2}\right)$.
(c) Find $\|\overrightarrow{A B}\|$.
9. Vector addition and subtraction: For two position vectors $\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$ and $\mathbf{w}=\left\langle w_{1}, w_{2}\right\rangle$ we have

$$
\mathbf{v}+\mathbf{w}=\left\langle v_{1}, v_{2}\right\rangle+\left\langle w_{1}, w_{2}\right\rangle=\left\langle v_{1}+w_{1}, v_{2}+w_{2}\right\rangle
$$

Componentwise addition. Similarly, subtraction is given by

$$
\mathbf{v}-\mathbf{w}=\left\langle v_{1}, v_{2}\right\rangle-\left\langle w_{1}, w_{2}\right\rangle=\left\langle v_{1}-w_{1}, v_{2}-w_{2}\right\rangle
$$

10. Scalar multiplication: For scalar λ and position vector $\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$, we have $\lambda \mathbf{v}=\lambda\left\langle v_{1}, v_{2}\right\rangle=$ $\left\langle\lambda v_{1}, \lambda v_{2}\right\rangle$. Note that $\|\lambda \mathbf{v}\|=|\lambda|\|\mathbf{v}\|$.
11. Parallel: Two vectors \mathbf{v} and \mathbf{w} are parallel if there exists a scalar $\lambda \neq 0$ such that $\mathbf{w}=\lambda \mathbf{v}$. Thus two vectors are parallel if they point in the same or opposite direction.
12. For vectors $\mathbf{v}=\langle 4,-2\rangle$ and $\mathbf{w}=\langle-3,5\rangle$, compute
(a) $\mathbf{v}+\mathbf{w}$
(b) $\frac{1}{2} \mathbf{v}+10 \mathbf{w}$
(c) $5 \mathbf{v}-3 \mathbf{w}$
(d) $\|-2 \mathbf{w}\|$
13. Are $\mathbf{v}=\langle-4,6\rangle$ and $\mathbf{w}=\langle 3,-5\rangle$ parallel?

Pick x so that \mathbf{v} and $\mathbf{u}=\langle 3, x\rangle$ are parallel.
14. Standard basis vectors: For any position vector $\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$ we have

$$
\mathbf{v}=v_{1}\langle 1,0\rangle+v_{2}\langle 0,1\rangle
$$

Define the standard basis vectors \mathbf{i} and \mathbf{j} by

$$
\mathbf{i}=\langle 1,0\rangle \quad \text { and } \quad \mathbf{j}=\langle 0,1\rangle .
$$

Then $\mathbf{v}=v_{1} \mathbf{i}+v_{2} \mathbf{j}$.
15. Algebraic Properties: For any vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} and real scalars c and d :
(a) $\mathbf{v}+\mathbf{w}=\mathbf{w}+\mathbf{v}$

Commutativity
(b) $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$

Associativity
(c) $\mathbf{v}+\mathbf{0}=\mathbf{v}$
(d) $\mathbf{v}+(-\mathbf{v})=\mathbf{v}-\mathbf{v}=\mathbf{0}$
(e) $c(\mathbf{v}+\mathbf{w})=c \mathbf{v}+c \mathbf{w}$
(f) $(c+d) \mathbf{v}=c \mathbf{v}+d \mathbf{v}$
(g) $(1) \mathbf{v}=\mathbf{v}$
(h) $(0) \mathbf{v}=\mathbf{0}$

Multiplication by 0
16. Unit vectors: A vector with length 1 is called a unit vector. For any nonzero position vector $\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$, a unit vector pointing in the same direction as \mathbf{v} is

$$
\mathbf{e}_{\mathbf{v}}=\frac{1}{\|\mathbf{v}\|} \mathbf{v} .
$$

17. Find a unit vector in the same direction as $\mathbf{v}=\langle-12,5\rangle$.
18. Linear combination: $c \mathbf{v}+d \mathbf{w}$

If $\mathbf{v}=5 \mathbf{i}+\mathbf{j}$ and $\mathbf{w}=4 \mathbf{i}-7 \mathbf{j}$, express $3 \mathbf{v}-2 \mathbf{w}$ as a linear combination of \mathbf{i} and \mathbf{j}.
19. An airplane has an airspeed of 650 kilometers per hour (kph). Suppose the wind velocity is given by the vector $\mathbf{w}=\langle 32,48\rangle$. In what direction should the airplane head in order to fly due west, in other words in the direction of $\mathbf{- i}$?
20. Two forces $\mathbf{F}_{\mathbf{1}}$ and $\mathbf{F}_{\mathbf{2}}$ with magnitudes 10 lbs and 12 lbs , respectively, act on an object at a point P. Find the resultant force \mathbf{F}, its magnitude, and its angle. (See diagram)

