4.5 Curve Sketching

1. Using calculus, find intervals where f is increasing/decreasing, where f is concave up/down, any inflection points, and any local maxima/minima. Then sketch a labeled graph of $y=f(x)$, indicating any maxima/minima and any inflection points on the graph:

$$
f(x)=\left(x^{2}+1\right) e^{-x / 2}
$$

2. Sketch the graph of a twice-differentiable function $y=f(x)$ with the following properties. Label coordinates on the graph where possible.

\boldsymbol{x}	\boldsymbol{y}	Derivatives
$x<2$	$y^{\prime}<0, y^{\prime \prime}>0$	
2		$y^{\prime}=0, y^{\prime \prime}>0$
$2<x<4$	$y^{\prime}>0, y^{\prime \prime}>0$	
4		$y^{\prime}>0, y^{\prime \prime}=0$
$4<x<6$		$y^{\prime}>0, y^{\prime \prime}<0$
6	7	$y^{\prime}=0, y^{\prime \prime}<0$
$6<x$		$y^{\prime}<0, y^{\prime \prime}<0$

3. Find vertical/horizontal asymptotes, local extrema, and intervals of concavity for $f(x)=\frac{1}{x^{2}}+\frac{1}{x^{3}}$. Sketch the graph; be sure to label your graph and indicate the transition points (critical points and inflection points, if any).
4. Find the vertical asymptote, local extrema, and intervals of concavity for $f(x)=x+\frac{a}{x}$, where $a>0$. Sketch the graph for generic $a>0$; be sure to label your graph and indicate the transition points (critical points and inflection points, if any).
