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stock killed by the adult predators. Some parts of the dead prey population is consumed
by adult predators and remaining parts are consumed by juveniles and the remaining
portion decays naturally. In light of this, a mathematical model is proposed to study the
stability and bifurcation behaviour of a prey-predator system with age based predation.
Prey-predator All the.feasi.ble equ_il}br_ia of the systerr_l are obtained and t_hg conditio.ns for the existe_nce
Age structure of the interior equilibrium are determined. The local stability analysis of all the feasible
Stability equilibria is carried out and the possibility of Hopf-bifurcation of the interior equilibrium
Hopf-bifurcation is studied. Finally, numerical simulation is conducted to support the analytical results.
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1. Introduction

The prey predator system is a very important system in ecology which has been studied by many mathematicians [1-7]. In
nature, the prey-predator system exhibits age and stage based dynamics that has been widely studied using mathematical
models [8]. Recently, autonomous systems with a stage structure have been considered in [9-12]. A predator-prey system
with stage structure for the prey is studied by Cui and Takeuchi [13]. They provided a sufficient and necessary condition to
guarantee permanence of the system. Stability and Hopf-bifurcation analysis in a prey-predator system with stage structure
for prey and time delay is studied by Chen and Changming [14]. A robust prey-dependent consumption predator prey
Gomportz model with periodic harvesting for the prey and stage structure for the predator with constant maturation time
delay has been studied by Liu et al. [3]. A three species Lotka-Volterra type food chain model with stage structure and time
delays is investigated by Xu et al. [15]. They assumed that the individuals in each species may belong to immature or mature
class. The age to maturity was presented by time delay. A ratio dependent predator-prey model with stage structure for the
predator and time delay due to gestation of the predator is investigated by Xu and Ma [16]. Recently, many authors studied
different kinds of stage structured models and some significant work have been carried out by Sun et al. [17-19].

Keeping this in mind, in the present paper, we have constructed a model in which age of the predator is considered to play
an important role in community dynamics and rate of predation. Since most of the predators in forest in higher age-groups
are large in size so it becomes essential to consider age-structure in predator population. In large animals only adult preda-
tors take part in direct predation while suckling feed on milk of adult predators and juveniles are dependent on the prey
population killed by the adult predators. Some part of the dead prey-population is consumed by adult predators and some
part by juveniles while the remaining part decays naturally. Therefore, in this paper a mathematical model has been
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developed by taking age structure in the predator population with Holling type-II functional response. Stability and bifurca-
tion analysis is carried out for feasible equilibrium points.

2. Basic assumptions and mathematical model

The model is given by following system of non-linear ordinary differential equations (Table 1):

dd%:h}(lgf(fﬁl +d)Qy, .
% = M1Q; + b10aPeQ, — (1 + d2)Q,, N
dd% = 111,Q, + byt PeQs — d3Q3, ’

with non-negative initial conditions P(0) >0, P, =0, Q;(0) >0, i=1,2,3.
The above system of equations can be non-dimensionalised using the relations: x; =2, x, =% x3

a
%, t=%T and introducing the new parameters as K=2X, a :% c :%, r:’%, d, :M_

my =" dy =% p="% ¢ 0%t The non-dimensionalised system of equations are as follows:

%=x1(17%)7%7 (6)
% = % — XyXs5 — XaX4 — CX, (7)
% = 1Xs — d1X3, (8)
% = M1X3 + bXaXq — doXa, 9
% = MyX4 + €XoXs5 — d3Xs, (10)

with initial conditions: x;(0) = x;p > 0, and x(0) = 0i=1,3,4,5 where, r, K, my, my, di1, d2, d3, a, b, c and e are positive
constants.

3. Boundedness and equilibria of the system

In this section, we analyse the system of Eqgs. (6)-(10) under the initial condition x;(0)= x50 >0,
X2(0) =0, x3(0) = x30 > 0, X4(0) = x40 > 0, X5(0) = x50 > 0. The right hand side of the Eqs. (6)-(10) are smooth functions
of variables (x1, X2, X3, X4, Xs) and all the parameters involved in the system are non-negative. In the following lemma
we have shown that all the solutions are bounded in the region Q.

Table 1
The definition of parameters used in system of Eqs. (1)-(5).
P Density of prey
Pe Concentration/amount of dead prey
Q Density of the suckling in predator population
Q; Density of the juveniles in predator population
Q3 Density of the adults in predator population
b; Biomass conservation rate constant
;i Consumption rates
m; Maturation rate
r intrinsic growth rate of prey
d; death rate
K carrying capacity
;{] Birth rate of predator
a Half Saturation Constant
g Natural decay rate
4 Predation rate

The indices i may take on the integer value 1, 2 or 3.
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Lemma 3.1. The system (6)-(10) is uniformly bounded in Q, where

Q = {(X1,X2,X3,X4,X5) : 0 < X1 (t) + X2(t) + X3(t) + X4(t) + X5(t) < I;—]e}, and
0; = min{(0 — 1),c, (d; —my), (da — my), (d5 — 1)}.

Proof. We have from (6) %‘ < X ( — ’;%) Hence lim,..x; <K. Let us consider a time dependent function:
Wi (t) = %1 (t) + X2 (t) + X3(t) + X4(t) + Xx5(t). Clearly,
dW1 o dX] dX2 dX3 dX4 dX5
Tar " dr Tde Tt Tde Tt
Using (6)-(10) in the above expression, we obtain
dW1 X%
o - X1 — ra aXyXs5 — XpX4 — CXo + X5 — d1X3 + M1X3 + bXyXg — daXg + MyXy — d3Xs + €XoX5
< (X] — CXy — (d] —my )X3 — (dz — mz)X4 — (d3 — T)X5)
< (0}(1 — (0 — 1)X1 — Xy — (d] — ml)X3 — (dz — mz)X4 — (d3 — r)Xs) < 0K — 04W, (t)7

where 0; is chosen as the minimum of {(6 — 1), ¢, (dy —my), (d2 —my), (ds —r)}. Thus
dw,

T + 01W1 < OK.

Now applying the theorem of differential inequalities [20], we obtain

0< W, (t) < W, (0)9701{ +(())—K,

1

as t — oo, we have

nglge—K.
01

Hence all the solutions of the system (6)-(10) are bounded in Q.
We now find all the possible equilibria of the system (6)-(10). The system of Eqs. (6)-(10) have three feasible equilibria,
namely,

(i) Trivial equilibrium point: Er = (0,0, 0,0,0).
(ii) Axial equilibrium: E, = (K, 0,0,0,0).

(iii) Positive interior equilibrium: E* = (x;,x3, X3, X}, X&), where x; = Z(—f Xy = oxs, Xy =Bt xr = (1 —%‘) (1+x;) and x;
o - - - - d3b-dyer [ (dsb—dye)+ 2™ o
is given by x;21+x;(K—1)(1-1) —K(l —1- cx;)) =0, where I = (ax;(1 - )), o= T is exist if

M a<1, (i)I<1, (ii)x <=, ¥ <KandK>1. O

c

4. Dynamic behaviour and Hopf-bifurcation

In the Section 3, we observed that the system of Eqs. (6)-(10) have three equilibria, namely, E7(0,0,0,0,0), Ex(K,0,0,0,0)
and E*(x;, x3, X3, x5, x5 ). We will now study the dynamical behaviour of the system about all the three feasible equilibria. The
variational matrix for the system of Egs. (6)-(10) is

R 0 0 0 -4
K

(14x7)? (1+4x1)
( H";)Z —(axs +Xx4+c) 0 —X; —ax; + 7y
Vi= 0 0 —d, 0 r
0 bxs m;  —d; + bx; 0
L 0 exs 0 m, —d; +ex; |

The characteristic equation of Vy at Er is
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(=1+2)(c+ A +B1J2+Byi+B3) =0,

where B, = d] -+ d2 + d37 B, = d1d2 + d1d3 + d2d3 and Bs = d]d2d3 — rmqms.
The above characteristic equation has at least one positive root and therefore the equilibrium point Er is unstable.
The characteristic equation of V; at E, is

(14 2)(c+ A)(2* +B1A® + Byi+B3) =0,

all the eigenvalue of the above equation has negative real part if d;d>ds > rmym;. So the equilibrium point E, is asymptot-
ically stable.
The characteristic equation of V; at E* is

P +AN + A3 + A+ A+ As =0, (11)
where

A = a1 + Gy + Gag + 055 + dy,
Ay = 44102 + (11044 + A23044 + Ap5053 + A11055 + (22055 + Aaalss + A11dq + Aopdy + Agady + As5d7 + ApX5,

A3 = (15021057 + (3504405 + A22044055 + A220sady + Ar505201 + 2205507 + Aaalssdy + Aa5a40My — MyMLT + (42055X;

+ agdi X5 + ay (azsasz + (44055 + Agaty + Assdy + A22(Aas + As5 + d7) + 042X§),

Ay = 504405201 + A2204405501 + A25042d1My + A15021 (Aaalsy + As2d7 + AaaMy) — GyMMaT + Aaa0s5d1X5 + A52MTX;

+ai (025(144(152 + 2044055 + Q22044071 + A2505201 + 22055071 + Aaalssdy + Aa5a42My — MyMaT + (42055X5 + 042d1X§)7

As = a15021d1 (444057 + Ag2M3) + A1 (022044055611 + G501 (A44057 + Ag2My) — A M MLT + A ssd1X5 + aszm1m§)-,

—XixE X X XE X7 * *
ﬁ‘f’fla ais :W. az :W’ Gy = X5 + X3 +C, a5 = 0X5 *mv as = bx,, as; = exi, as =d, — bx;, ass =

=
ds; — ex;. The Routh-Hurwitz criterion gives a set of necessary and sufficient conditions for all the roots of the Eq. (11) to have
negative real part and which are as follows: A; >0, i=1,2,3,4,5 AA; > As, A1AAs > A§ +AfA4) and
(AsAs — A2A5)(A1A; — As) > (A1A4 7A5)2. From these expressions it is however difficult to interpret the results in ecological
terms.

If one of the above mentioned conditions is violated then the system would become unstable around the positive interior
equilibrium point E*.

Now, we will study the Hopf-bifurcation [21] of the above system, taking r as the bifurcation parameter. Now, the nec-
essary and sufficient condition for the existence of the Hopf-bifurcation, if it exists is r = ry such that

i)Ai(ro) >0, i=1,2,3,4,5,

ii) Ay (ro)Az(ro) > As(ro),

iii) A1 (ro)Az (ro)As(ro) > (As(ro)? + A1 (r0)*As(ro)),

iV) (A3(r0)Aa(r0) — Az (T0)As (o)) (A1 (To)Aa (o) — As(ro)) — (A1 (re)As(ro) — As(ro))* = 0 and

(V) if we consider the eigen values of the characteristic Eq. (11) is of the form /; = u; + iv;, then ‘fj—”r #0,i=1,2,3,4,5.
After substituting the values, the condition (A3As — AAs)(A1A; — As3) — (A1A4 — A;,)2 becomes

Di1® + Dyr? + Dsr + Dy = 0, (12)

(
(
(
(

where D, = n%n4, D, = 7n%n3 — (7A1n4 + n6)2 + nz(A1A2n4 — 2NNy +A2n6), D3 = 2ninyns + n%n4 +2A%n3n4 — Aynpns—
A;ning + 2nsng +A1(—A2(n2n3 + Tl1Tl4) +A%Tl5 — 2(“41’15 + Tlgns)), D4 = A1Aynin; — n%n3 —A%Tl%— A1A§Tl5 4+ Aynins+ 2Ainsns
71’1%, nm :A3 + Nyr, ny =mimy, ns :A4+n4r, Ng = dxpMqiM; fa52m1X§+a11m1m2, ns :A5+n6r, Ne = aA;1My (azzmzf
as;m;x;).The Eq.(12) has at least one positive root say r = ry.

Therefore, one pair of eigenvalues of the characteristic Eq.(11) at r = ro are of the form Z;, = +i», where v is positive real
number.

Now, we will verify the Hopf-bifurcation condition (v), puttingZ = u + iz in (11) and separating real and imaginary parts, we
have

W+ AUt + (A — 100213 + (A3 — 6A 1) + (50° — 3A0% + Au + (A1 — Asv? +As) =0, (13)

(12)? — (10u% + 4A1u + A2) 12 + (5u* + 4A 113 + 34202 + 2Asu + Ay) = 0. (14)
Substituting the value of #? from (14) in (13), we get
U+ AU’ + (A2 — 10f ()u’ + (A3 — 6Af (W) + (5(F(1))* — 3Aaf (u) + Aq)u + (A1 (f(1))* — Asf (u) + As) = O,
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where f(u) =1 ((10u? + 4Aju +A;) — F),and F = \/(10u2 +4A1U + A7) — 4(5u% + 4A 13 + 3A5u2 + 2Asu + Ay), differentiating
with respect to r and putting r = ro, we have

{@} B fO)% - (F(0)* -5

drliy 5((0))” + 241 (0)f(0) — 34af (0) — Asf'(0) + As

#0,

since,

f(u)(;—':jf (f(u))z% f% =My (@11 (G2My — As2%5) — f(u)my) # 0.

This ensures that the above system has a Hopf-bifurcation around the interior equilibrium E*. Hence as the ratio of growth
rate of suckling to predation rate (r) crosses its threshold value, r = ry, then all population starts oscillating around the inte-
rior equilibrium point.

This ensures that the above system has a Hopf-bifurcation around the interior equilibrium E*. Now, we further reduce the
set of differential Egs. (6)-(10) into the normal form in order to determine the direction and stability criterion of the bifur-
cating periodic solution. Here, the Poincare’s method is used to put Egs. (6)-(10) into the normal form following the proce-
dure outlined by Hassard et al. [22]. For the sake of simplicity, introducing the new variables x; = x; + w;, i =1,2,3,4,5, the
system of Egs. (6)-(10) can be written in matrix form as

X =AX +B, (15)

where dot (.) cover X denotes the derivative with respect to time. Here AX is the linear part of the system and B represents the
nonlinear part. Moreover,

Wy an 0 0 0 —ais by
w, ay —Gp 0 —Xx3 ax b2
X=|w|, A=l 0o o -4 o r | B=| 0o |,
Wy 0 (¢7D) my —0yq 0 bW2W4
Ws 0 as 0 m, —dss ew,Ws
where by = H3x;w? — “,'—j — x;H*W3 — H*w ws + H*w?ws, by = by — WT% — aw,Ws — wow, and H = —L . At r = 1o, using the

equation (AsAg — AxAs)(A1Az — As) — (A1As — As)® = 0'in (11) and becomes (1)

(2% + v2)<z3 +A 2 +% <A2 +1/A; —4A4>/1+ (As —Alvz)> =0,

where v? =1 <A2 — \/Aﬁ — 4A4>. From the above equation it is clear that 1;, = 4iv and other eigenvalues have negative real
numbers say —p;, j = 1 — 3. Next, we seek a transformation matrix P which reduces the matrix A to the form

0 - 0 0 0
v 0 0 0 O
p'AP=(0 0 —p, 0 0 |,

00 0 -p O

0 0 0 0 -—p;
where the nonsingular matrix P is given as

1 0 1 1 1
C1 Cxp C3 (g4 Cp5
P==|c31 €32 €33 (3 C35

Ca1 Ca2 Ca3 Caq Cy5

Cs1 Cs2 €53 Cs4 Css

where,



6524 O.P. Misra et al./Applied Mathematical Modelling 37 (2013) 6519-6529

o 12(7C5213 + C51l4) + l] (C51l3 + C52[4) _ r(VZ + a]]d]) _ 16[2 + 1115 _ —an
Cy1 = e y 1=, =50, (= )
L+5 a15(02 4+ dy) L+5 ais
Cop = —li(=Cs2l5 4 ¢s1ls) + L (5115 + Cs2l4) 4 = ro(—aqy +dy) > = —lgly + L5 = v
= 7 2 ) = N =72 gz = )
ll +lz (115(7/2+d1) l] +12 ass
= —C33M1My + Cs3(das — Py)(as5 — Pq) Ca3 = I'Cs3 Cas = M1 C33052 + A42C53(A55 — Py)
(42M3 + As53(Aas — Py) ' di—p;’ sz (044 — Py) + a2y
_ —(an +py) _ —C341MyM + C54(d44 — P2)(0s5 — Do) __TCs4 _ TG
C53 = , Cy = y G =7——, (35= s
as (423 + As3(Aag — Py) di - p, di —ps
Cas = M1 34057 + AazC54(As5 — Psy) Coq = —(an +py) Cos = —C35M1 M + Cs5(0aq — P3)(As5 — P3)
(52 (04q — P3) + QoM ais ’ AgoM; + As52(A4q — P3) '
Cas = My C35057 + A42C55(As5 — P3) Co5 = —(an1 +p3)
052(0aa — P3) + Mz’ as
i = aa4sy + Aoy, b = vAsy, I3 = — 0 + Aaalss — C31My My,

ly = v(ags + ass) + c3amimy, s = Auz(A55C51 + VCs2) + A52C31My,
ls = (42 (VC51 — Us55Cs2) — As52C321M1.

To achieve normal form of the Eq. (15), we make another change of variable i.e. X = PY, where
Y= Y2 Y3 Ve ¥s5)

Through some algebraic manipulations, Eq. (15) takes the form

Y=Y +F, (16)
where, IT = P"'AP and
F'(y1.Y2.¥3,Y4:5)
F(1,92.Y3.Y4:Ys)
F=Pf= F(y1.Y2.¥3,Y4.Y5)
F'(y1.Y2.¥3,Y4:Ys)
F(y1,Y2.¥3,Y4:Y5)
fis given by
U0 Y2:Y3.Y4:Y5))
F2(1,Y2,. Y34 Y5))
f=|P(01y2y3.5455) |
FH Y2 Y34 Y5))
F((V1:¥2.Y3.Y4.Y5))
where ,
Fr0.Y2.Y3.Y0Ys) = X5H (01 +y3 + Vs +¥5)° = 01+, -;—(}’4 *J5) ~XH vy + Y3 +Ya +5) —H (1 +3 + Vs +Ys)

X (C51Y1 + C52Y + Cs53Y3 + CsaYg + C55Ys) + H> (V1 + Y3 + Y4 +¥5)*(C51Y1 + Cs2Yy + Cs3Y3 + C54Y4

+ Cs5Ys),

FPV1.Y2:Y3:Ya:Ys) = —aWa(Cs1Y1 + CsaYy + C53Y3 + CsaYy + C55Y5) — (Ca1¥1 + Ca2Ys + C23Y3 + C24Y4 + Cas5Ys) (Caryy

+ CarYy + CasYs + CaaYy + Casys) — (XsH> (V1 + Y5 + Y4 +¥5)> = xsH (1 + Y5 +Ya +¥5)° — H (0

+ Y3 +Ya+Ys5)(Cs1Y1 + Csa¥y + C53Y5 + CsaYy + CssYs) + H> (V1 + Y3 + V4 +YS)2(551J’1 + Cs52)>
+ Cs53Y3 + CsaYa + Cs5)5)),

f3(y17y27y37y47y5) :07
FAV1.Y2:Y3.Ya:Ys) = D(Ca1Yy + €22 + C23Y3 + C2a¥a + CasYs) (CarVy + CazVy + CazYs + CasYy + Casys),

P V1.Y2:Y3:Ya:Ys) = €(Co1Y1 + C2a¥y + Ca3Y3 + CaaYy + C25Y5)(C51Yy + €525 + C53Y3 + Csa¥g + Cs5Ys).-
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Eq. (16) is the normal form of Eq. (15) from which the stability and direction of the Hopf bifurcation can be computed. In Eq.
(15), on the right hand side of the first term is linear and the second is non-linear in y’s. For evaluating the direction of peri-
odic solution, we can evaluated the following quantities at r = r and origin.

_1[eF PF (PP 2P
1 7a oy Ty T\ T ) )

1[2F 2°F' PP (PP 9P PF!
=477 "7 255 til5z 5zt 255-]|
4| 0y;  dy;  yi0y, \9yr  dy;  Oyi0y,

. o°F PF L 2P (PP PP OF
D4 oyt o3 Toiay, \ i 3 T oyon,

7+7

oy 0v;  oyidy, Oy3
g _1 O*F' N >F i IF PF

12 oy10y;  0y,0y; W19y, 0y ) |

g _l|oF P [P PF

002 oy 0y, 0,0y, \Oyi0y;  0y,0y;) |

" 1[0°F &F i 1|F *F . &P
1 = ) 5

8

o, LI OF 9P 0P (PP PP 9F OF
T8 T viovy vy, oy3 ’

“alon T T4l Tanan,
N : K, ,

w,=-1 w,=_20__ =1,2,3,

11 pj7 20 (Pj+2”/)7 J ) )

and

3 N s N N
81 =G + Z(2GJ”OZ/’” +Gloy ”]20)-

=1

Based on the above analysis, we can see that each g; can be determined by the parameters. Thus we can compute the fol-
lowing quantities:

) 2
i _
Gi(0) = 2 (gngzo —2lgn[* - ‘g032‘ ) +%’

__R(G(0)
>~ Re(Z ) 47

fa = 2Re{C:(0)},

I Im{C(0)} + ppIm{2 (o)}
v

Theorem 4.1. i, determines the direction of the Hopf bifurcation: if u, > 0 (1, < 0), then the Hopf bifurcation is supercritical
(subcritical) and the bifurcating periodic solutions exist for r > ro (r <rg); 3, determines the stability of bifurcating periodic
solutions. The bifurcating periodic solutions are orbitally asymptotically stable (unstable) if f, < 0 (B, > 0); and T, determines the
period of the bifurcating periodic solutions, the period increases (decreases) if T, > 0 (T, < 0).
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Theorem 4.2. Let the following inequalities hold:

XK < (1+x7), (18)
303Myxs < CMyX;, (19)
Ko 2 mxix:
—(cze+1+a)) <——41 20
(()1 (s + )) 6x;(1+x;) (20)
Ko 2 Acxiximixicy
~“(ch-1 #, 21
(01 @ )> 9 (1+x)) =
with
3Kx5x; c3mox; (1 Xt
~<C < = — , 22
2((0+x)—Ke) ' 2 \K (1+x)) (22)
2d1X3
2
0<CZ<3m1x3’ (23)
X3
c3 > max, (24)
Then E* is globally asymptotically stable with respect to solutions initiating in the interior of the region Q.
Proof. We consider the following positive definite function about E*
. X 1 1 c c
V(X1,X2,X3,X4,X5) = C1 (X — X — x’;lnx—l) to - x;)° o (45— x3)° + 52 (Xa —x3)° +73 (X5 —x5)°. (25)
1
Then the derivative along solutions, V is given by
y— (1Mo s _x _ ) (K% xoXa —
V=c(x x1)<l K +x1)> + (X3 = x5) (rxs — d1X3) + (X2 — X3) ((1 ) XX5 — XoX4 cxz)
+ C2(M1X3 + bxoXs — doXs) (Xa — X}) + C3(Xs — X5 ) (M2X4 + €XoX5 — d3Xs). (26)
After some algebraic manipulation, this can be written as
. 1 X: X C1 XEX: M X5Cy
V=—z|-- 5 + 5 212y — 2125 ———21 722 _d2 - —327
‘ 1(1< (T+x)(1 +x¥>> A+x)(T+x)77 @27 x(14+x)7 77y
m2X2C3 ) X1
- Zt + | C3exs + m — (X, | 2225 + (CobX4 — X2)22Z4 + CoM1Z324 + 112325 + C3M2475, (27)
5 1

wherez; = (1 —X;), 2= (x2 —X3), z3 = (X3 —X3), 24 = (X4 — X;), z5 = (x5 — X;). Hence V can be written as the sum of the
quadratics

Y 1 2 1 2 1 2 1 2 1 2 1 2 1 2
V=- 55112] + 8122123 — 552222 — 551121 + 8152125 — 552222 — 552222 + S252325 — 555525 — 252222 + 8242224
1 1 1 1 1 1 1
- 554422 - 553325 + 534224 — 554422 - 553325 + 8352224 — 555522 - 553325 + 8352224 — 5555227 (28)

where

K (1+x)(1+x;))’ 3x;(1+x;)’ '
Saq _2mix;c o5 = MaX4Cs 5= ——l
3x; 2xs 1+x)’

X1
S5 = (C3€X5 + ————0aX; |, Sz = (C2bX4 —X3), S34 = Comy,
(1+2x1)
X5

S12=m7

S35 = I'1S45 = C3My.

Sufficient conditions for V to be negative definite are that the following conditions hold:
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$2, < S11522,511 > 0, (29)
$25 < $11855,511 > 0, (30)
S35 < Ss5522, (31)
$2, < SaaS22, (32)
2, < S33S44, (33)
S35 < $33Ss5, (34)
S2s < S4aSss, - (35)

We note that inequalities (29), (30), (33) and (34) are automatically satisfied for the suitable values of ¢1, ¢;, c; given by
(18), (22)-(24). However (20) implies (31), (21) implies (32) and (19) implies (35). Hence V is negative definite under the
condition Eq. (15), and so V is a Liapunov function with respect to E* whose domains contains €, proving the theorem. O

5. Numerical results

We substantiate all the previous analytical findings with the help of numerical simulations performed with Matlab. The
stability of the first equilibria E, = (0.7,0,0,0,0) can be seen in Fig. 1. It is obtained for the parameter values
k=07, a=04, c=001, r=0.01, d;=0.02, m; =0.015,
b=08, d,=09, my=08, d3;=054 e=03.
In this case the system has axial equilibrium point in which system is asymptotically stable.
The interior equilibrium is shown to be stable for the following parameter values
k=10, a=04, ¢=0.001, r=02, d;=011, m =01,
b=08, d,=055 m;=035 =03, d;=0.6,
In Fig. 2. For this choice of parameter values the unique interior equilibrium point E* = (5.8975,
0.5096,5.1449, 3.6149,2.8297) is asymptotically stable. We studied the Hopf-bifurcation of the system taking r as the bifur-
cation parameter, the transversality condition hold with these parameters when r = ry = 0.244. From Fig. 3, it is clear that
system is stable in (0,79) and when r > ry, then the system becomes unstable and Hopf bifurcation occurs. Further, we have
also determined the stability and direction of Hopf-bifurcating periodic solutions at the critical value ry. For the same par-
ameteric values and r = ro = 0.244, we have calculated the following values
g1 = —0.0341521 — 0.0149509i, g,, = —0.0309595 — 0.0182149i,
80, = —0.0374306 — 0.0117438i, g,, =0.0018869 + 0.00342361i,
C1(0) = —0.00284741 — 0.00705047i, u'(ro) = 0.0031527.

14

12

X X X X X
o N W NS

0.8 |r 1

0.4 1

0.2 1

0 I . .
0 200 400 600 800 1000

Fig. 1. The axial equilibrium point E4(0.7, 0, 0, 0, 0) of the system is asymptotically stable.
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Fig. 2. The interior equilibrium point E*(5.8975,0.5096, 5.1449,3.6149, 2.8297) of the system is asymptotically stable.

10

xX X X X X

o N W N

0 . .
0 500 1000 1500

Fig. 3. When r = .25 > ry = .244 and remaining parameters have same value, then the positive interior equilibrium point E* of system looses its stability
and a Hopf-bifurcation occurs.

It follows from (17) that u, > 0 and f, < 0. Therefore, the bifurcation periodic solutions exist for r > r, and the correspond-
ing periodic solutions are orbitally asymptotically stable.

6. Conclusion

In this paper, we have proposed a mathematical model to study the stability and Hopf-bifurcation analysis of a prey-
predator system incorporating age based predation. We have studied the stability behaviour of the system around the fea-
sible steady states. Our theoretical as well as numerical results show that for a certain threshold of the system parameters,
the system possesses asymptotic stability around the positive interior equilibrium depicting the co-existence of all the spe-
cies. Further, from the stability analysis and numerical simulation, it is also concluded that the prey population will survive
and predator population will go to extinction. From qualitative and numerical analysis we find that r is a bifurcating param-
eter for which the interior equilibrium point shows stable oscillatory behaviour when r > ry .
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Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/
j.apm.2013.01.036.
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