EXISTENCE OF A POSITIVE SOLUTION TO A RIGHT FOCAL BOUNDARY VALUE PROBLEM

RICHARD I. AVERY, JOHNNY HENDERSON AND DOUGLAS R. ANDERSON

Abstract. In this paper we apply the recent extension of the Leggett-Williams Fixed Point Theorem which requires neither of the functional boundaries to be invariant to the second order right focal boundary value problem. We demonstrate a technique that can be used to deal with a singularity and provide a non-trivial example.

1. Introduction

The recent topological proof and extension of the Leggett-Williams fixed point theorem [3] does not require either of the functional boundaries to be invariant with respect to a functional wedge and its proof uses topological methods instead of axiomatic index theory. Functional fixed point theorems (including [2, 4, 5, 6, 8]) can be traced back to Leggett and Williams [7] when they presented criteria which guaranteed the existence of a fixed point for a completely continuous map that did not require the operator to be invariant with regard to the concave functional boundary of a functional wedge. Avery, Henderson, and O’Regan [1], in a dual of the Leggett-Williams fixed point theorem, gave conditions which guaranteed the existence of a fixed point for a completely continuous map that did not require the operator to be invariant relative to the concave functional boundary of a functional wedge. We will demonstrate a technique to take advantage of the added flexibility of the new fixed point theorem for a right focal boundary value problem.

2. Preliminaries

In this section we will state the definitions that are used in the remainder of the paper.

Definition 1. Let E be a real Banach space. A nonempty closed convex set $P \subset E$ is called a cone if it satisfies the following two conditions:

(i) $x \in P, \lambda \geq 0$ implies $\lambda x \in P$;
(ii) $x \in P, -x \in P$ implies $x = 0$.

Every cone $P \subset E$ induces an ordering in E given by

$x \leq y$ if and only if $y - x \in P$.

Definition 2. An operator is called completely continuous if it is continuous and maps bounded sets into precompact sets.

2000 Mathematics Subject Classification. 34B10.
Key words and phrases. Fixed-point theorems, positive solutions, singularities, cone.
Definition 3. A map α is said to be a nonnegative continuous concave functional on a cone P of a real Banach space E if $\alpha : P \to [0, \infty)$ is continuous and

$$\alpha(tx + (1-t)y) \geq t\alpha(x) + (1-t)\alpha(y)$$

for all $x, y \in P$ and $t \in [0, 1]$. Similarly we say the map β is a nonnegative continuous convex functional on a cone P of a real Banach space E if $\beta : P \to [0, \infty)$ is continuous and

$$\beta(tx + (1-t)y) \leq t\beta(x) + (1-t)\beta(y)$$

for all $x, y \in P$ and $t \in [0, 1]$.

Let α and ψ be non-negative continuous concave functionals on P and δ and β be non-negative continuous convex functionals on P; then, for non-negative real numbers a, b, c and d, we define the following sets:

1. $$A := A(\alpha, \beta, a, d) = \{ x \in P : a \leq \alpha(x) \text{ and } \beta(x) \leq d \},$$
2. $$B := B(\alpha, \delta, \beta, a, b, d) = \{ x \in A : \delta(x) \leq b \},$$
3. $$C := C(\alpha, \psi, \beta, a, c, d) = \{ x \in A : c \leq \psi(x) \}.$$

We say that A is a functional wedge with concave functional boundary defined by the concave functional α and convex functional boundary defined by the convex functional β. We say that an operator $T : A \to P$ is invariant with respect to the concave functional boundary, if $a \leq \alpha(Tx)$ for all $x \in A$, and that T is invariant with respect to the convex functional boundary, if $\beta(Tx) \leq d$ for all $x \in A$. Note that A is a convex set. The following theorem is an extension of the original Leggett-Williams fixed point theorem [7].

Theorem 4. [Extension of Leggett-Williams] Suppose P is a cone in a real Banach space E, α and ψ are non-negative continuous concave functionals on P, δ and β are non-negative continuous convex functionals on P, and for non-negative real numbers a, b, c and d the sets A, B and C are as defined in (1), (2) and (3). Furthermore, suppose that A is a bounded subset of P, that $T : A \to P$ is completely continuous and that the following conditions hold:

(A1) $\{ x \in A : c < \psi(x) \text{ and } \delta(x) < b \} \neq \emptyset$ and $\{ x \in P : \alpha(x) < a \text{ and } d < \beta(x) \} = \emptyset$;
(A2) $\alpha(Tx) \geq a$ for all $x \in B$;
(A3) $\alpha(Tx) \geq a$ for all $x \in A$ with $\delta(Tx) > b$;
(A4) $\beta(Tx) \leq d$ for all $x \in C$; and,
(A5) $\beta(Tx) \leq d$ for all $x \in A$ with $\psi(Tx) < c$.

Then T has a fixed point $x^* \in A$.

3. **Right Focal Boundary Value Problem**

In this section we will illustrate the key techniques for verifying the existence of a positive solution for a boundary value problem using the newly developed extension of the Leggett-Williams fixed point theorem, applying the properties of a Green's function, bounding the
nonlinearity by constants over some intervals, and using concavity to deal with a singularity. Consider the second order nonlinear focal boundary value problem

\begin{equation}
 x''(t) + f(x(t)) = 0, \quad t \in (0, 1),
\end{equation}

\begin{equation}
 x(0) = 0 = x'(1),
\end{equation}

where \(f : \mathbb{R} \to [0, \infty) \) is continuous. If \(x \) is a fixed point of the operator \(T \) defined by

\[
 Tx(t) := \int_0^1 G(t,s)f(x(s))ds,
\]

where

\[
 G(t,s) = \begin{cases}
 t & : t \leq s, \\
 s & : s \leq t,
\end{cases}
\]

is the Green's function for the operator \(L \) defined by

\[
 Lx(t) := -x''(t),
\]

with right-focal boundary conditions

\[
 x(0) = 0 = x'(1),
\]

then it is well known that \(x \) is a solution of the boundary value problem (4), (5). Throughout this section of the paper we will use the facts that \(G(t,s) \) is nonnegative, and for each fixed \(s \in [0, 1] \), the Green's function is nondecreasing in \(t \).

Define the cone \(P \subset E = C[0,1] \) by

\[
 P := \{ x \in E : x \text{ is nonnegative, nondecreasing, and concave} \}.
\]

For fixed \(\nu, \tau, \mu \in [0,1] \) and \(x \in P \), define the concave functionals \(\alpha \) and \(\psi \) on \(P \) by

\[
 \alpha(x) := \min_{t \in [\tau,1]} x(t), \quad \psi(x) := \min_{t \in [\mu,1]} x(t) = x(\mu),
\]

and the convex functionals \(\delta \) and \(\beta \) on \(P \) by

\[
 \delta(x) := \max_{t \in [0,\nu]} x(t), \quad \beta(x) := \max_{t \in [0,1]} x(t) = x(1).
\]

In the following theorem, we demonstrate how to apply the Extension of the Leggett-Williams Fixed Point Theorem (Theorem 4), to prove the existence of at least one positive solution to (4), (5).

Theorem 5. If \(\tau, \nu, \mu \in (0,1) \) are fixed with \(\tau \leq \mu < \nu \leq 1 \), \(d \) and \(m \) are positive real numbers with \(0 < m \leq d\mu \) and \(f : [0, \infty) \to [0, \infty) \) is a continuous function such that

\[
 (a) \quad f(w) \geq \frac{d}{\nu-d} w \quad \text{for} \quad w \in [\tau d, \nu d],
\]

\[
 (b) \quad f(w) \text{ is decreasing for} \quad w \in [0, m] \quad \text{with} \quad f(m) \geq f(w) \quad \text{for} \quad w \in [m, d], \quad \text{and}
\]

\[
 (c) \quad \int_0^\mu s f \left(\frac{ms}{\mu} \right) ds \leq \frac{2d-f(m)(1-\mu^2)}{2},
\]

then the operator \(T \) has at least one positive solution \(x^* \in A(\alpha, \beta, \tau d, \mu) \).
Proof. Let $a = \tau d$, $b = \nu d = \frac{a}{\nu}$, and $c = d\mu$. Let $x \in A(\alpha, \beta, a, d)$ then if $t \in (0, 1)$, by the properties of the Green’s function $(Tx)'(t) = -f(x(t))$ and $Tx(0) = 0 = (Tx)'(1)$, thus

$$T : A(\alpha, \beta, a, d) \rightarrow P.$$

We will also take advantage of the following property of the Green’s function. For any $y, w \in [0, 1]$ with $y \leq w$ we have

$$\min_{s \in [0, 1]} \frac{G(y, s)}{G(w, s)} \geq \frac{y}{w}. \tag{6}$$

By the Arzela-Ascoli Theorem it is a standard exercise to show that T is a completely continuous operator using the properties of G and f, and by the definition of β, we have that A is a bounded subset of the cone P. Also, if $x \in P$ and $\beta(x) > d$, then by the properties of the cone P,

$$\alpha(x) = x(\tau) \geq \left(\frac{\tau}{1}\right) x(1) = \tau \beta(x) > \tau d = a.$$

Therefore,

$$\{x \in P : \alpha(x) < a \text{ and } d < \beta(x)\} = \emptyset.$$

For any $K \in \left(\frac{2d}{2-\mu}, \frac{2d}{2-\nu}\right)$ the function x_K defined by

$$x_K(t) \equiv \int_0^1 KG(t, s)ds = \frac{K(2-t)}{2} \in A,$$

since

$$\alpha(x_K) = x_K(\tau) = \frac{K\tau(2-\tau)}{2} > \frac{d\tau(2-\tau)}{2-\mu} \geq d\tau = a,$$

$$\beta(x_K) = x_K(1) = \frac{K}{2} < \frac{d}{2-\nu} \leq d,$$

and x_K has the properties that

$$\psi(x_K) = x_K(\mu) = \frac{K\mu(2-\mu)}{2} > \left(\frac{2d}{2-\mu}\right) \left(\frac{\mu(2-\mu)}{2-\mu}\right) = d\mu = c$$

and

$$\delta(x_K) = x_K(\nu) = \frac{K\nu(2-\nu)}{2} < \left(\frac{2d}{2-\nu}\right) \left(\frac{\nu(2-\nu)}{2-\nu}\right) = d\nu = b.$$

Hence

$$\{x \in A : c < \psi(x) \text{ and } \delta(x) < b\} \neq \emptyset.$$

Claim 1: $\alpha(Tx) \geq a$ for all $x \in B$.

Let $x \in B$. Thus by condition (a),

$$\alpha(Tx) = \int_0^1 G(\tau, s) f(x(s)) ds \geq \left(\frac{a}{\tau(\nu-\tau)}\right) \int_\tau^\nu G(\tau, s) ds$$

$$= \left(\frac{a}{\tau(\nu-\tau)}\right) (\tau(\nu-\tau)) = a.$$

EJQTDE, 2010 No. 5, p. 4
Claim 2: $\alpha(Tx) \geq a$, for all $x \in A$ with $\delta(Tx) > b$.

Let $x \in A$ with $\delta(Tx) > b$. Thus by the properties of $G(6)$,

$$
\alpha(Tx) = \int_0^1 G(\tau, s) f(x(s)) \, ds \geq \left(\frac{\tau}{\nu} \right) \int_0^1 G(\nu, s) f(x(s)) \, ds
$$

$$
= \left(\frac{\tau}{\nu} \right) \delta(Tx) \left(\frac{\tau}{\nu} \right) (d\nu) = a.
$$

Claim 3: $\beta(Tx) \leq d$, for all $x \in C$.

Let $x \in C$, thus by the concavity of x, for $s \in [0, \mu]$ we have

$$
x(s) \geq \frac{cs}{\mu} \geq \frac{ms}{\mu}.
$$

Hence by properties (b) and (c),

$$
\beta(Tx) = \int_0^1 G(1, s) f(x(s)) \, ds = \int_0^1 s f(x(s)) \, ds
$$

$$
= \int_0^\mu s f(x(s)) \, ds + \int_{\mu}^1 s f(x(s)) \, ds
$$

$$
\leq \int_0^\mu s f\left(\frac{ms}{\mu} \right) \, ds + f(m) \int_{\mu}^1 s \, ds
$$

$$
\leq \frac{2d - f(m)(1 - \mu^2)}{2} + \frac{f(m)(1 - \mu^2)}{2} = d.
$$

Claim 4: $\beta(Tx) \leq d$, for all $x \in A$ with $\psi(Tx) < c$.

Let $x \in A$ with $\psi(Tx) < c$. Thus by the properties of $G(6)$,

$$
\beta(Tx) = \int_0^1 G(1, s) f(x(s)) \, ds \leq \left(\frac{1}{\mu} \right) \int_0^1 G(\mu, s) f(x(s)) \, ds
$$

$$
= \left(\frac{1}{\mu} \right) Tx(\mu) = \left(\frac{1}{\mu} \right) \psi(Tx) \leq \left(\frac{1}{\mu} \right) c = d.
$$

Therefore, the hypotheses of Theorem 4 have been satisfied; thus the operator T has at least one positive solution $x^* \in A(\alpha, \beta, a, d)$. \hfill \Box

We note that because of the concavity of solutions, the proof of Theorem 5 remains valid for certain singular nonlinearities as presented in this example.

Example: Let

$$
d = \frac{5}{4}, \tau = \frac{1}{16}, \mu = \frac{3}{4}, \text{ and } \nu = \frac{15}{16}.
$$

EJQTDE, 2010 No. 5, p. 5
Then the boundary value problem

\[x'' + \frac{1}{\sqrt{x}} + \sqrt{x} = 0, \]

with right-focal boundary conditions

\[x(0) = 0 = x'(1), \]

has at least one positive solution \(x^* \) which can be verified by the above theorem, with

\[\frac{5}{64} \leq x^*(1/16) \quad \text{and} \quad x^*(1) \leq \frac{5}{4}. \]

References

(Received November 23, 2009)