4.9 Antiderivatives

Idea: Given the derivative of a function, find the original function. Given the slope of a function at every point, find the function itself. Given the velocity of an object, find its position (displacement) function. Given the acceleration of an object, find its velocity.

Definition: If F'(x) = f(x) for all $x \in (a, b)$, then F is an <u>antiderivative</u> of f on (a, b).

function f	antiderivative F	integral notation
k		
x^n		
$\frac{1}{x}$		
$\cos x$		
$\cos(ax+b)$		
$\sin x$		
$\sin(ax+b)$		
e^x		
ae^{bx}		
$\sec^2 x$		
$\frac{1}{x^2+1}$		

1. Find the general antiderivative of $f(x) = 5x^4 - 6x + \frac{6}{x^5} + \sqrt[3]{x} + \sin\left(\frac{x}{2}\right) + 7 - 6e^{3x}$.

2. Find the general antiderivative of $f(x) = \frac{-2}{\sqrt[5]{x^2}} + \sqrt[4]{x^5} + \cos(2\pi x) - 4x^5 + 7x - 6 + e^{x/2}$.

				_					
3.	Find $f($	(x) if	f''(x) =	$-36x^2 + 12$	x with	f'(1) = -	-1 and	f(1)	= -2

4. A particle moving horizontally along the x-axis has acceleration $a(t) = 10 + 3t - 3t^2$ feet/second², where $t \ge 0$. Find the position function s(t) assuming the particle satisfies s(0) = 0 and s(2) = 10.

5. A car brakes with a constant deceleration (negative acceleration) of 40 feet per second², producing skid marks 160 feet long before coming to a complete stop. How fast was the car traveling when the brakes were applied?

Homework: (348 - 349) 26, 28, 34, 46, 62, 64, and the following: A car is traveling at **100** km per hour when the driver sees an accident **80** meters ahead and slams on the brakes. What constant deceleration is required to stop the car in time to avoid a collision?