
Project 5

The Collapse of 

Galloping Gertie

You’ve probably seen the movies. The bridge begins to wobble from side to side.
The oscillations get larger and larger. Leonard Coatsworth leaves his car with his
dog Tubby inside and crawls on his hand and knees off the bridge to safety. Sud-
denly, the bridge collapses. The date is November 7, 1940, only four months after
its grand opening. The collapse came as no surprise because the Tacoma Narrows
Bridge,* or “Galloping Gertie,” as it was fondly called by local residents, was
notorious—even before it opened for traffic—for a swaying and vertical undulat-
ing motion of its roadway caused by the peculiar wind currents that pass through
the narrows. See Figure 1.

After working through the problems in Chapter 5, you might suspect that reso-
nance was the culprit. Somehow the forcing of the wind and the natural frequency
of the suspension cables coincide, and thus the amplitude of the forced system (in
this case the bridge) grew without bound, eventually causing the bridge to fall. But
recent work by Lazer and McKenna suggests that the phenomenon that caused the
bridge to fail was more complex than resonance.† Most of the models presented in
their work are beyond the scope of this project. The Still Curious? section at the
end of this project provides an introduction to one of their more elementary models.

In the previous edition of this text, Gilbert Lewis proposed a new model based
on the work of Lazer and McKenna. This model illustrates one nonlinear mecha-
nism that could have led to the demise of Galloping Gertie.

Imagine one cable of the suspension bridge hanging vertically. In some ways
the cable is much like a very stiff spring. It has a natural length, the end of which
we will place at x � 0. When a cable is stretched beyond this length (x � 0), it
exerts a force in the upward direction; when compressed (x � 0), it exerts a force
in the downward direction. But a cable is not a spring, and it is relatively easy
to convince yourself that the upward restitution force that results from stretching
the cable is greater than the downward force that comes from compressing it. In
other words, we want to model the cable like a spring using Hooke’s law with
different spring constants depending on whether x � 0 or x � 0. Let a denote the

*The original Tacoma Narrows Bridge connected the city of Tacoma, Washington, and Gig Harbor,
Washington.
†A.C. Lazer and P.J. McKenna, Large Amplitude Periodic Oscillations in Suspension Bridges: Some
New Connections with Nonlinear Analysis, SIAM Review 32 (December 1990): 537–578.

Figure 1 The Tacoma Narrows Bridge—before and after the collapse
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234 Project  5  THE COLLAPSE OF GALLOPING GERTIE

spring constant for compression and b the spring constant for stretching so that
0 	 a 	 b. Define

(1)

In the absence of damping, our differential equation then becomes

, (2)

where the function g(t) represents the forcing due to the wind.

PROBLEM 1 (CD). To illustrate the core issue underlying this phenome-
non, suppose in (2) that m � 1, a � 1, b � 4, g(t) � sin 4t, and initial conditions
x(0) � 0, x�(0) � �. Use the Tacoma Bridge Tool on the DE Tools CD to plot
solutions of (2) on the interval 0 � t � 100 for a variety of values of �. What do
you observe and what might these observations say about the fate of the bridge?

As was mentioned above, the model given in (2) is nonlinear. But the nonlin-
earity arises because F(x) is piecewise linear. Thus we can find partial solutions that
are defined over time intervals where the solution x(t) does not change sign.

PROBLEM 2. Use the parameters and initial conditions given in Prob-
lem 1 but assume that � � 0. If F(x) � 4x for t small, show that

is a solution of (2) on the interval 0 � t � 
 /2. Note that in addition to show-
ing that x(t) satisfies the differential equation and initial conditions you must
also show that x(
 /2) � 0. Plot this function on the given time interval. Find
x�(
 /2) and show that it is negative.

For the next time interval we use F(x) � x.

PROBLEM 3. Use the values of x(
 /2) and x�(
 /2) obtained in Problem 2
and show that

is a solution of (2) on the interval 
 /2 � t � 3
 /2.

We refer to each solution piece as a cycle. Thus each cycle corresponds to
either a positive or a negative displacement of the bridge.

PROBLEM 4 (CAS). Use your solutions in Problems 2 and 3 to plot
x(t) on the interval 0 � t � 3
 /2. How does the velocity at t � 3
/2
compare with the velocity at t � 0?

Clearly, we could continue in this manner, successively solving the appro-
priate linear differential equation using the initial conditions x � 0 and a new value

x(t) � cos t  ��� �
2

5� �
4

15
 sin t cos 2t	

x(t) �
1

6
   sin 2t  [3� � 1 � cos 2t]

mx� � F(x) � g(t)

F(x) � �ax, x 	 0

bx, x ! 0.
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Project  5  THE COLLAPSE OF GALLOPING GERTIE 235

x� calculated from the final x� of the previous solution. A careful analysis of this
reveals that the amplitude of each successive cycle increases by a constant rate
proportional to . Thus as , the amplitudes of the oscillations grow without
bound. This is what you should have observed in Problem 1.

It is instructive to see what happens for some other values of a and b in (1).

PROBLEM 5 (CD). Consider the three cases of (1) where b � 1, a � 4;
b � 64, a � 4; and b � 36, a � 25. Notice that in the first case the condition
0 	 a 	 b is not satisfied. Again using g(t) � sin 4t, m � 1, and initial condi-
tions x(0) � 0, x�(0) � 1, plot the solution of (2) on the interval 0 � t � 100
in each of the three cases. Describe the long-term behavior of x(t) in each of
the three cases.

Still Curious?

The paper by Lazer and McKenna referred to above presents a somewhat different
model. In this section we briefly discuss that model. Consider the differential
equation

(3)

where � is the damping constant, g is the acceleration due to gravity, and the func-
tion F is defined in (1). The new features in this model are the damping term �x�
and the forcing term � sin �t due to the wind. In the next two problems we take
a � 17, b � 13, � � 0.01, and g � 10.

PROBLEM 6 (CD). Let’s begin by seeing what happens when � � 0.
This represents the state of the bridge when the wind is not blowing. Plot the
solution of (3) with initial conditions x(0) � x0 	 0, x�(0) � 0 on the interval
0 � t � 50 and describe what happens to the bridge.

PROBLEM 7 (CD). Now let’s see what might happen when the wind
blows. Let � � 4 and � � 0.04. Plot solutions of (3) with initial conditions

, x�(0) � 0 on the interval 0 � t � 50 and describe what happens
to the bridge. Does x(t) ever cross the t-axis? What part of the piecewise
defined function F(x) is relevant in this case? What are the physical implica-
tions of this property?

In Problem 7 you probably noticed that x(t) 	 0 for all t. Thus only one
“piece” of F(x) is relevant. In other words, we are really solving the differential
equation

. (4)

PROBLEM 8 (CAS). Solve the differential equation in (4) with the
initial conditions x(0) � x0 	 0, x�(0) � 0. Indicate the transient and steady-
state terms as .

In Problem 7 the small value of � means that the wind is not blowing very
hard. Let’s see what happens as this parameter grows and the wind begins
to howl.

t : �

x� � 0.01x� � 17x � �10 � 0.04 sin 4t

x(0) � �10
17

x� � �x� � F(x) � �g � � sin �t

t : �2
15
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236 Project  5  THE COLLAPSE OF GALLOPING GERTIE

PROBLEM 9 (CD). Let � � 0.2 and x�(0) � 0. For each of the initial
displacements x(0) � �0.5, �0.4, . . . , 0.4, 0.5, plot solution curves on
the interval 0 � t � 50. Describe what happens to the oscillations as the
values of x(0) increase. Interpret this in terms of the bridge system being
modeled.

The Rest of the Story

The bridge over the Tacoma Narrows was eventually rebuilt. It opened in October
1950, 10 years after the collapse. Notice in Figure 2 that the original bridge, whose
fatal flaw was its light and graceful design, was replaced by one whose span was
greatly stiffened by truss work. But the “new” 1950 bridge is outdated by current
highway standards; a new suspension bridge is currently under construction parallel
to the existing bridge. See Figure 3.

Figure 3 Design of parallel
bridges; the addition is scheduled to
open in 2007

Figure 2 Tacoma Narrows Bridge
rebuilt in 1950
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