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Dai Fujiwara and Bill Thurston on the
runway at Paris Fashion Week, 2010.
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This author is but one of many
who was influenced by Bill Thur-
ston, and saddened by his death on
August 21, 2012. She is grateful
for the time they spent playing with
mathematics.

",t—;._ B | ry the following experi-
| ’i ment. Get a tangerine
i and attempt to take

J the peel off in one

e =] piece. Lay the peel flat

and see what you notice about the

shape. Repeat several times. This
can be done with many types of cit-

rus fruit. Clementines
work especially well.
Cornell mathemat-
ics professor William
P. Thurston used this
experiment to help stu-
dents understand the
geometry of surfaces.

insight. In the early 1980s he made
a conjecture. called the geometriza-
tion conjecture, about the possible

geometries for three-dimensional
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Photo by William Thurston
Image from Peeling the
Oranges Reception, Paris
Fashion Week, March
Thurston, who won the  2010.

Fields Medal in 1982,

was well known for his geometric

manifolds. Informally,
an n-dimensional mani-
fold is a space that
locally looks like R™.
Although Thurston
proved the conjecture
for large classes of
three-manifolds, the
general case remained
one of the most im-
portant outstanding problems in
geometry and topology for 20 years.
In 2003 Grigori Perelman proved
the conjecture. The geometrization

conjecture implies the Poincaré
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conjecture, so with his solution
Perelman became the first to solve
one of the famed Clay Millennium
Problems. (The November 2009 is-
sue of Math Horizons ran a feature
on Perelman.)

The story of Thurston’s geometri-
zation conjecture and the resolution
of the Poincaré conjecture drew
attention from reporters and other
writers outside of the mathematical
community. One person who hap-
pened upon an account of Thurston
and his work was the creative direc-
tor of House of Issey Miyake, fash-
ion designer Dai Fujiwara. In a let-
ter to Thurston, Fujiwara described
how he felt a connection with the
geometer, as he had used the same
technique of peeling fruit to explain
clothing design to students new to
the subject. Designers also practice
the art of shaping surfaces from
two-dimensional pieces.

Fujiwara felt Thurston’s three-
dimensional geometries could provide

a theme for Issey Miyake’s ready-to-
wear fashion line. Thurston, who in
1991 had organized (along with his
mother, Margaret Thurston) what
was perhaps the first mathematical
sewing class as part of the Geometry
and Imagination Workshop, agreed
there was potential for connection.
Thus the collaboration was born.
The Issey Miyake collection inspired
by Thurston’s eight geometries
debuted on the runway at Paris
Fashion Week in spring 2010.

GEOMETRY OF SURFACES

Before discussing the fashion
show and the geometry of three-
manifolds, we will discuss geom-
etries of two-dimensional objects,
or surfaces. Examples of surfaces
include the sphere, the torus, and
the Mobius band. Any (orient-
able) surface can be embedded in
]Ra, and this allows us to measure
distances on the surface. Let’s think
about the sphere with radius one

Figure 1, Spheres.

centered at the origin. This sphere
is described by the familiar equation
22 +y% + 2% = 1. Choose any two
points on the sphere, say the north
pole (0,0,1), and the south pole
(0,0,—-1).

There are two natural ways to
define the distance between these
points. The first way is to assign
the distance between points to be
the usual Euclidean distance in R®.
In this metric, the distance between
the poles is two, the length of the
diameter.

For another metric, assign the
distance to be the minimum length
of any path on the sphere that
starts at one pole and ends at the
other; this would be the length of
the shortest arc of a great circle
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Beauty is truth, truth beauty—that is all ye know
on earth, and all ye need to know.

This famous and provocative quotation of John Keats
is echoed on the emblem of the Institute for Advanced
Study, where I took my first job after graduate school.
After reading an account of my mathematical discover-
les concerning eight geometries that shape all three-
dimensional topology, Dai Fujiwara made the leap to
write to me, saying that he felt in his bones that my
insights could give inspiration to his design team at
Issey Mayake. He observed that we are both trying to
understand the best three-dimensional forms of two-di-
mensional surfaces, and he noted that we each, indepen-
dently, had come around to asking our students to peel
oranges to explore these relationships. This resonated
strongly with me, for I have long been fascinated (from
a distance) by the art of clothing design and its connec-
tions to mathematics.

Many people think of mathematics as austere and
self-contained. To the contrary, mathematics is a very
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rich and very human subject, an art that enables us to
see and understand deep interconnections in the world.
The best mathematics uses the whole mind, embraces
human sensibility, and is not at all limited to the small
portion of our brains that calculates and manipulates
symbols. Through pursuing beauty we find truth, and
where we find truth we discover incredible beauty.

The roots of creativity tap deep within to a place we
all share, and I was thrilled that Dai Fujiwara recog-
nized the deep commonality underlying his efforts and
mine. Despite literally and figuratively training and
working on opposite ends of the earth, we had a won-
derful exchange of ideas when he visited me at Cornell.
I feel both humbled and honored that he has taken up
the challenge to create beautiful clothing inspired by the
beautiful theory that is dear to my heart.

WiLLIAM P. THURSTON



k(p) > 0 k(p)=0

between them. Now the distance
between the poles would be 7. This
latter metric is more appropriate;
after all, when traveling from Buf-
falo to Sydney, the best way is not
by drilling through the center of the
earth.

Two manifolds are topologically
equivalent if there is a continuous
bijection, with continuous inverse,
between them. The bijection is
called a homeomorphism, and we
say the manifolds are homeomor-

kK(p) < 0

phic. Under this equivalence rela-
tion, all of the surfaces in figure 1
are spheres.

Each of these spheres can be
equipped with a metric from R,
as previously described, by measur-

ing the shortest path in the surface.

Even though they are topologically
equivalent, as metric spaces they
are very different. Two surfaces are
metrically equivalent if there is a
distance-preserving map, called an
1sometry, between them.

N
Glue red Glue blue
lines circles
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N

Figure 2. Gaussian curvature, left.
Figure 3. Building a torus, above.

One quantity that is preserved
under isometries is Gaussian cur-
vature. Recall that the Gaussian
curvature is a function k& from a sur-
face S to the real numbers, where
k(p) is the product of the principal
curvatures at p; roughly speaking,
k(p) gives a measure of the amount
and type of bending of the surface
at a point p. At a point of posi-
tive curvature, all of the (locally
length minimizing) curves through
p bend in the same direction; in

Issey Miyake’s spring 2010 collection on the runway at Paris Fashion Week.

Photos by Frédérique Dumoutin/Issey Miyake

www.maa.org/mathhorizons : : Math Horizons : : November 2012 7



zero curvature there is

a straight line in the
surface through p; and in
negative curvature, the
surface has curves that
bend in opposite direc-
tions. (See figure 2.)

C

You should be able to
identify points of nega-
tive curvature in both
the green and yellow
spheres in figure 1. The purple
sphere has only positive curvature,
though the curvature is greater at
the north pole than at the equator.
The blue sphere is the most sym-
metric and has constant curvature
k(p)=1 for all p.

The round sphere is one of three
model two-dimensional geometries.
The other two model geometries
are the BEuclidean plane, which has
constant zero curvature, and the hy-
perbolic plane, which has constant
curvature —1. Every (compact and
smooth) surface supports a met-
ric of exactly one type of constant
curvature: positive, negative, or
zero. Although the sphere has many
different metrics, it cannot have a
Euclidean or hyperbolic metric. We
give examples of surfaces of the lat-
ter two types.

Euclidean surfaces, such as a
torus, can be constructed from
pieces of the Euclidean plane. Start
with a rectangle in the Euclidean
plane. A sheet of paper works nicely
as a model. Tape together opposite
sides of the piece of paper (math-

)

i rotate
by
211/3

Figure 5. Euclidean cone.

ematically, this is done by creating
a quotient space). If we stop at this
point, we have a Euclidean cylin-
der. If we identify the opposite two
boundary circles, we will create a
torus with a Fuclidean metric inher-
ited from the original rectangle.

Of course, if you try to do this
with your paper cylinder, you will
find it impossible. You can come
close by folding and creasing the
cylinder, but the final object does
not look very much like a torus.
We do not allow creasing as a legal
construction technique, as the cor-
responding mathematical object
would not have a tangent plane
along the crease. If we had a fourth
dimension to bend into, we could
tape together the opposite circles
without distorting the metric.

Finally, we will describe an
example of a hyperbolic surface.
Figure 4a pictures a crocheted
model of a piece of the hyperbolic
plane, conceived and constructed by
Daina Taimina. We point out one
difference between the hyperbolic
plane and the Euclidean plane,

Figure 6. Three-dimensional Euclidean

orbifold.
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Photos by Daina Taimina from her book Crocheting Adventures with Hyperbolic Planes (AK Peters, 200)

Figure 4. Daina Taimina’s hyperbolic crocheting: from left, hyperbolic plane, hyperbolic octagon,
hyperbolic pair of pants.

which can be seen in this model.

If one crocheted a Euclidean disc,
the number of stitches in concentric
circles would increase linearly; this
is because the circumference of a
circle in the Euclidean plane is a
linear function of the radius— 27r.
In the hyperbolic plane, the circum-
ference of the circle grows ezponen-
tially with the radius— 2msinh(r)
—creating the wavy surface seen in
figure 4a.

Figure 4b shows a regular octa-
gon with 45-degree interior angles
in the hyperbolic plane. Note that
such a polygon could not occur in
the Euclidean plane, where regular
octagons have interior angles of 135
degrees. If we identify every other
side (the ones marked with black
Velcro in figure 4b) of this octagon,
we create a hyperbolic pair of pants,
shown in figure 4c. Note that “pair
of pants” is the name geometric
topologists use to refer to surfaces
of this homeomorphism type, which
are important building blocks for all
hyperbolic surfaces.

ORBIFOLDS,
THREE-DIMENSIONAL
GEOMETRIES, AND DESIGN

Essentially, Thurston’s geometri-
zation conjecture states that any
three-manifold can be decomposed
into finitely many pieces, each of
which supports a metric modeled on
one of eight geometries: the three-
dimensional analogue of spherical,
hyperbolic, or Euclidean space, or
one of five other possible geometries:




Y@

Euclidean: Borromean Hyperbolic: Spherical:
Rings 5x3 Turkshead 3 Hopf Circles
Nil: 4 Hopf Circles SL(2,R): 5 Hopf Circles Solv

Figure 7. lllustrations of orbifold representatives of the eight geometries.

$?xR, H%xR, Nil, Solv, or uni-
versal cover of SL(2,R). If a closed
manifold supports one of these eight
geometries, it cannot support a met-
ric of any of the other seven types.

An example of a Euclidean three-
manifold is the three-dimensional
torus. To mathematically construct
this manifold, start with a solid
Euclidean cube, which can be de-
scribed as the set of points (z,y,2)
in R? such that 0 <z,9,z<1.
Identify opposite faces of the cube
by distance-preserving maps. More
explicitly, identify the top face
(z=1) to the bottom face (z = 0),
by defining an equivalence relation
on the cube that identifies (z,y,0)
with (z,9,1). Analogous identifica-
tions can be made between the
front and back faces, and with the
left and right faces.

The room you are sitting in, if it
is roughly cubical, provides a good
model for this space. Once the floor
and the ceiling have been identified,
when you look straight up you will

see the bottom of your feet. If you
would like to experience different
geometries of three-dimensional
manifolds, try Jeff Week’s program
Curved Spaces, available at his web-
site: http://geometrygames.org/.

Using the eight three-dimension-
al geometries as inspiration for a
fashion line seemed like a dif-
ficult endeavor; clothing is essen-
tially two-dimensional. To learn
about these geometries, and to
exchange ideas, Fujiwara visited
Thurston at Cornell. After re-
turning to Japan, he continued
to exchange ideas with Thurston,
and the topologist Kazushi Ahara
from Meiji University gave a series
of lectures about the geometries
to the design team. The designers
were a somewhat apprehensive au-
dience, and Ahara promised not to
use certain words, such as “equa-
tion” or “trigonometric function”
during his lectures.

So what was the result of the col-
laboration? How did Fujiwara

HZxR

S2xR

accomplish the difficult task of
representing the eight geometries

in the Issey Mayake line of fashion?
At the time of writing this article,
several videos from the fashion show
can be found on YouTube, so the
interested reader can form his or
her own opinion. The videos can be
found by searching for “Issey Mi-
yake Fashion Show: Women’s Ready
to Wear Autumn/Winter 2010.”

In an interview Fujiwara ex-
plained how his collection was “an
expression of space.” From this
statement, one gets the impres-
sion that the designers mainly used
the mathematics as inspiration
for their work, rather than creat-
ing an explicit illustration of the
geometries. There was also a more
concrete, somewhat poetic connec-
tion between the collection and the
geometries. Before describing this
connection, we need to introduce
one more mathematical object: the
orbifold.

An orbifold is a manifold with

www.maa.org/mathhorizons : : Math Horizons : : November 2012 ¢



singularities. Like manifolds, we can
equip orbifolds with metrics mod-
eled on a specific geometry. For our
purposes, it should be sufficient
to understand two related examples.
Let’s start with the two-dimensional
case. A cone, with cone angle of
2n/3, is an example of a Euclidean
orbifold with one singular point of
order three. This cone can be con-
structed in two ways. In a method
similar to the construction of the
torus, we can cut a wedge from the
circle with angle 2r/3 and tape up
the sides. We could also cut just one
slit from the edge of the circle to the
center, and then roll up the disk so
it wraps around itself three times.
Mathematically, this process can be
described as taking the quotient of
the disk by a rotation. Away from
the cone point, every point has a
small neighborhood
so that the metric
looks just like a
small disk in R?.
The higher
dimensional analog
of the cone can be
constructed from
a solid cylinder.
Again, we can
think about the
construction in two
ways: either as cut-
ting a wedge and
gluing opposite
sides, or by this
process of rolling
up the cylinder so
it wraps around
itself three times.
We see that in
three-dimensional
spaces our singular
sets can be one
dimensional. We
have a whole line
segment of sin-

Photo by William Thurston

Scarves at the Peeling the Orange
Reception.

point is that a particular three-
dimensional orbifold can belong to
at most one of the eight geometric
classes, and that singular sets can
be one dimensional. Sometimes
these singular sets have several com-
ponents, which are linked together.
The three-sphere $°, which is the
set of points distance one from the
origin in R4, is a three-dimensional

gularities labeled
with a three.

The important Fashion Week.

Photo by Frédérique Dumoulin/Issey Miyake

Issey Miyake’s spring 2010 collection on the runway at Paris
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manifold and is the model space for
one of the eight geometries. How-
ever, for the orbifold $%,with a one-
dimensional singular set, the metric
class depends on how the singular
set is sitting inside $°. A table

of links is shown in figure 7. Each
link corresponds to the orbifold 3
with the given link as a singular set
of order two. Each of the obifolds
carries a different one of the eight
geometries.

Thurston drew the links in figure
7. They were one of the many ideas
that he shared with Fujiwara. The
links intrigued Fujiwara, and they
appeared as an integral part of
several of the pieces in the fashion
line, as seen on the models on the
runway.

In an article written for the fash-
ion magazine Idoménée, Thurston
gave the following comment about
the collection:

“The design team took these
drawings as their starting theme
and developed from there with their
own vision and imagination. Of
course it would have been foolish
to attempt to literally illustrate
the mathematical theory—in this
setting, it’s neither possible nor
desirable. What they attempted
was to capture the underlying spirit
and beauty. All I can say is that it

” |

resonated with me.” I

Kelly Delp is an assistant professor
at Buffalo State College specializing
in geometric topology. In the spring
of 2010 she visited Cornell, where
she attended a joint math-fashion
workshop that led to a project with
Bill Thurston building surfaces.
Email: kelly.delp@gmail.com
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To our readers:
n August 21, mathematics lost one of its
giants, Bill Thurston.

Best known for his celebrated
geometrization conjecture, and prov-
ing it for a large class of manifolds,

Thurston revolutionized the way that mathematicians
understand three-dimensional space. Every compact
three-dimensional manifold can be decomposed canoni-
cally along tori and spheres into simple pieces. Thur-
ston’s conjecture states that each of the simple pieces
can be given one of eight homogeneous geometries. He
won the Fields Medal in 1982 for this and other work
in low-dimensional topology. Two decades later, his
geometrization conjecture was famously proved in full
by Grisha Perelman.

In addition to his contributions to low-dimensional
topology and geometry, Bill’s passion for finding new
ways to express and explain mathematical ideas was
legendary. Whether creating movies, building 3D struc-
tures, or applying his ideas to novel realms such as
fashion design (see p. 5), he embraced the firm convic-
tion that mathematicians could do better in commu-
nicating the essence of their craft. His son Dylan said,
“Bill emphasized constantly that the goal of mathemat-
ics, and the source of its beauty and utility, is human

An image from the 1991 film not Knot.
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Bill Thurston.

understanding. He aimed to gain and share an intuitive
understanding of mathematics, recruiting all human
senses—vision, motion, even touch.”

It is fitting, then, that December will mark
the opening of the U.S.’s first museum of
mathematics. MoMath (see p. 14) will be
a concrete realization of this idea: a place
where people of all ages and backgrounds can
experience and interact with mathematics,
using at least most of their human senses.

In his 1994 article “On Proof and Pro-
gress in Mathematics,” Bill reflected on his
own place in the mathematical landscape: “I
do think that my actions have done well in
stimulating mathematics.” We agree whole-
heartedly.

BRUCE TORRENCE and STEPHEN ABBOTT
Editors

Charlie Gunn
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