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PROOF Euler began by introducing the function

f(x) = 1− x2
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To Euler, f(x) was just an infinite polynomial with f(0) = 1 (as is immediately apparent). Thus, it can be factored,
in the manner developed above, provided we determine the roots of the equation f(x) = 0. To this end, observe
that, for x 6= 0
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by the Taylor Expansion of sinx. Therefore, so long as x is not 0, solving f(x) = 0 amounts to solving
sinx

x
= 0,

which (through a simple cross-multiplication) reduces to solving sinx = 0. As we have seen, the sine function equals
0 precisely for x = 0, x = ±π, x = ±2π, and so on. But we must, of course, eliminate x = 0 from contention as a
solution of f(x) = 0, since we have already noted that f(0) = 1. For the rest of the proof, see Dunham’s Journey
through Genius, pages 216− 217.
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