THEOREM $1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25}+\cdots+\frac{1}{k^{2}}+\cdots=\frac{\pi^{2}}{6}$.
PROOF Euler began by introducing the function

$$
f(x)=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\frac{x^{8}}{9!}-\cdots
$$

To Euler, $f(x)$ was just an infinite polynomial with $f(0)=1$ (as is immediately apparent). Thus, it can be factored, in the manner developed above, provided we determine the roots of the equation $f(x)=0$. To this end, observe that, for $x \neq 0$

$$
\begin{aligned}
f(x) & =x\left[\frac{1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\frac{x^{8}}{9!}-\cdots}{x}\right] \\
& =\frac{x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\cdots}{x} \\
& =\frac{\sin x}{x}
\end{aligned}
$$

by the Taylor Expansion of $\sin x$. Therefore, so long as x is not 0 , solving $f(x)=0$ amounts to solving $\frac{\sin x}{x}=0$, which (through a simple cross-multiplication) reduces to solving $\sin x=0$. As we have seen, the sine function equals 0 precisely for $x=0, x= \pm \pi, x= \pm 2 \pi$, and so on. But we must, of course, eliminate $x=0$ from contention as a solution of $f(x)=0$, since we have already noted that $f(0)=1$. For the rest of the proof, see Dunham's Journey through Genius, pages $216-217$.

