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My story begins with a strange event, which took place on 4 January
2004, on Mars. A Martian wandering around near Gusev Crater on that
particular day would have undergone a life-changing experience. First, a
streak of fire high in the sky would have heralded the arrival of an alien arte-
fact, descending rapidly beneath a hemisphere of fabric. Then, as the arte-
fact neared the ground, the fabric would have torn away, allowing it to fall
the final hundred metres. And bounce. In fact, it bounced twenty-seven
times before finally coming to rest. It would certainly have been a sight to
remember.

The bouncy visitor was Mars Exploration Rover A, otherwise known as
Spirit. After a journey of 487 million kilometres it entered the Martian
atmosphere at a speed of 19,000 kilometres per hour. It was still travelling
at a healthy 50 kilometres per hour a few seconds before impact when its
airbags inflated and it made its touchdown. Spirit and its companion
Opportunity have now spent more than four years exploring the surface of
Mars, nearly twenty times as long as originally planned, leading to a wealth
of new scientific information about Earth’s sister planet. They may not
have finished yet.

Much of the credit for this stunning success must go to NASA’s engi-
neers and managers, but other disciplines were also essential — among
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them, mathematics. The spacecraft’s trajectories were calculated using
Newton’s laws of motion and gravity; Einstein’s later refinements were not
needed. Isaac Newton was elected a Fellow of the Royal Society in 1672,
twelve years after the Society was founded. His role in the development of
space travel is not hard to identify, even though he died 240 years before
the first Moon landing. Less obvious is the influence of a Fellow from the
Victorian era, George Boole, whose pioneering ideas in logic and algebra
proved fundamental to computer science. His influence can be detected in
the error-correcting codes that made it possible for the Rovers (and most
other space missions) to send images and scientific data back to Earth.
Mathematics, both ancient and modern, is deeply embedded in today’s
science, and makes vital contributions on a daily basis to many aspects of
human society.

The importance of mathematics in the space programme should be
evident even to a casual observer. Yet when the Rovers landed, and the
American mathematician Philip Davis pointed out that the mission
‘would have been impossible without a tremendous underlay of mathe-
matics’ — so tremendous, in fact, that ‘it would defy the most knowledge-
able historian of mathematics to discover and describe all the mathematics
that was involved’ — he found it necessary to add that ‘“The public is hard-
ly aware of this.’

This remark was an understatement. In 2007 two Danes with postgrad-
uate mathematics degrees, Uffe Jankvist and Bjérn Toldbod, decided to
uncover the hidden mathematics in the Mars Rover programme. They
visited NASA’s Jet Propulsion Laboratory at Pasadena, which ran the
mission, and discovered that it is not only the general public that lacks
awareness of the mathematics used in the Rover mission. Many of the
scientists most intimately involved were also unaware of the mathematics
being used. Some denied that there was any.

‘We don’t do any of that,” said one. “We don’t really use any abstract
algebra, group theory, and that sort.’
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‘Except in the channel coding,’ one of the Danish mathematicians
pointed out.

“They use abstract algebra and group theory in that?’

‘The Reed—Solomon codes are based on Galois fields.’

“That’s news to me. I didn’t know that.’

This story is fairly typical. Few people are aware of the mathematics that
makes their world work. Indeed, few are aware that mathematics is
involved in their world ¢ all. But - as the history of the Royal Society
exemplifies — mathematics has long been central to science, and science has
long been a major driving force for social change.

What causes this lack of awareness of the importance of mathematics in
the modern world? One of the main reasons, as the NASA story shows, is
that you don’t have to know any mathematics, or even be aware of its exis-
tence, to use the technology that it enables. This is entirely sensible — you
don’t need to understand computer programming to buy CDs over the
Internet, and you don’t need a degree in engineering to drive a car.
However, most computer users are aware that someone had to write the
software, and most drivers realise that someone had to design and build the
car. With mathematics, it seems to be different.

Why? The story of the Mars Rovers is instructive. JPL scientists did
not realise how deeply mathematics was involved in the Rover mission
because the mathematical techniques were built into dedicated computer
chips and programs. The resulting hardware and software carried out the
necessary calculations without human intervention. Moreover, most of
the chips and software were designed and manufactured by external
subcontractors.

In actual fact, the Rover mission rested on a huge variety of mathemat-
ical techniques. These included dynamical systems and numerical analysis
to calculate and control the spacecraft’s trajectory on its way to Mars, signal
processing methods to compress data and eliminate transmission errors
caused by electrical interference, even the design and deployment of the
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airbags. These techniques did not come into being overnight, and they

were not, initially, developed with the space programme in mind. The
work of Newton makes this very clear.

Newton’s father was a Lincolnshire farmer, who died three months
before his son was born. The boy did not impress some of his schoolteachers,
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who reported that he was idle and inattentive, but he did impress his head-
master, who persuaded Isaac’s mother to send him to university. At
Cambridge he studied law, but he also read books on physics, philosophy
and mathematics. In 1665 the university was closed because of plague,
and he returned to Lincolnshire. There, in a few years, he made huge
advances in several areas of mathematics and physics, which led to his elec-
tion as a Fellow of Trinity College.

Newton is famous for many things — his laws of motion, calculus (also
discovered by Gottfried Wilhelm Leibniz), the beginnings of numerical
analysis. All of this work leaves fingerprints on the Mars Rover mission,
but the most significant is the law of gravitation. Every body in the
universe, Newton declared, attracts every other body with a force that is
proportional to their masses and inversely proportional to the square of
the distance between them. When coupled to his laws of motion, the law
of gravitation provided accurate descriptions of the motion of the assort-
ed planets and moons of the solar system, and much more. It explained
the curious way in which the Moon wobbled on its axis, and the paths of
comets. It made the future of the solar system predictable, millions of
years ahead.

Newton’s motivation was ‘natural philosophy’, the scientific study of
Nature. If he had practical objectives in mind, they were related to things
like navigation, and were secondary to understanding what he called ‘the
system of the world’, which was the subtitle to his epic Principia
Mathematica (Mathematical Principles of Natural Philosophy). At that time,
the idea that humans might travel to the Moon was considered absurd,
when anyone considered it at all. Yet such is the power of mathematics that
when spacecraft began to leave the Earth in the 1960s, the tools needed to
calculate their orbits and plan their re-entry trajectories through the atmos-
phere were those developed by Newton and his successors. In particular,
since the law of gravitation applies to every particle of matter in the

universe, it must apply to spacecraft.
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NATURAL PHILOSOPHY HAS BORNE FRUIT AS
TECHNOLOGY

Once pointed out, it’s no great surprise that esoteric mathematics can be
used in esoteric applications like Martian space probes, even if no one
notices ... But what does that have to do with the everyday life of the ordi-
nary citizen? Next time you listen to a CD while driving along the motor-
way in your car, and hit a bump, you may care to ask yourself why the CD
player skips tracks only if it’s a really 4ig bump — big enough to risk damag-
ing your wheel. After all, a CD player is an extremely delicate device, with
a tiny laser that hovers a few millionths of a metre away from a plastic disc
covered in tiny dots.

The answer goes back to George Boole and the other nineteenth-centu-
ry mathematicians who founded modern abstracr algebra. Boole also hailed
from Lincolnshire, being born in Lincoln in 1815; his father was a cobbler
who was also interested in making scientific instruments, and his mother
was a lady’s maid. He did not take 2 university degree, but his talent for
mathematics attracted attention, and in 1849 he became Professor of
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Mathematics at Queen’s College, Cork. His most significant work was his
1854 book An Investigation of the Laws of Thought. In it, he reformulated
logic in terms of algebra — but a very strange kind of algebra. Most of the
familiar algebraic rules, such as x+y = y+x, are valid in Boole’s logical realm,
but there are some surprises, such as 1+1 = 0. Here 1 means ‘true’, 0 means
‘false’, and x+y means what computer scientists now call ‘exclusive or’:
either x is true, or y is true, bur not both. The first formula says that this
statement does not depend on the order in which the two statements x and
y are considered. The second says that if x and y are both true, then x+y is
false — because the definition of + includes the requirement ‘not both’.
More elaborate algebraic laws, such as (x+y)z = xz+yz, are also true in
Boole’s system; now the product xy means x and y. So Boole’s algebraic
rules follow from sensible logical ones.

It is a striking and surprising discovery. Logic, previously thought of as
being more basic than mathematics, can actually be reduced to mathematics.
And the reduction is so natural that the algebra of logic is almost the same as
traditional algebra. The new rules do make a difference, but you soon get used
to that. Boole knew he was on to something important, but it took a while for
most mathematicians to appreciate it. ‘Boolean algebra’ really took off when
digital computers started to appear. Computers are basically logic engines, and
Boole is widely recognised as a founder of theoretical computer science.

The link to digital computation is natural, but Boole’s influence runs
deeper. He was one of the first to realise that algebra need not be about
numbers alone: it can be about any mathematical concepts or structures
that can be manipulated symbolically according to a fixed system of rules.
Boole was one of the eatliest thinkers in a long tradition that includes the
tragic figure of Evariste Galois, killed in a duel shortly before his twenty-
first birthday. Today’s abstract algebra, with its key concepts of groups,
rings, fields and vector spaces, represents the fruits of their early labours.

These ideas, if I were to explain them in any detail, would seem abstract

and impractical — formal games played with symbols, to no clear purpose.
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They look like that because they operate on a structural level and focus on
deep generalities. But behind the scenes, the abstract algebra that Boole
pioneered has taken over most areas of mathematics, because it organises
concepts and provokes new ideas. The resulting mathematics can be found,
embodied in computer chips, inside most of today’s electronic gadgets:
CDs, DVDs, digital TVs, mobile phones, iPods, Nintendo Wiis,
BlackBerries, SatNav, digital cameras ...

Reed—Solomon codes are a typical example. These are the codes that
NASA used to detect and correct potential errors in the Rovers” images of
the Martian surface as they were beamed across the vastness of the solar
system to planet Earth. More familiar devices, such as CD players, also
would not work without Reed-Solomon codes. These codes hinge on, and
were motivated by, the algebraic legacy of Boole and Galois. They trans-
form the digital data that represents music in a way that makes it easy to
spot, and put right, any errors that occur when the CD is being played.
Virtually all of today’s digital communications are wholly reliant on
sophisticated and very modern mathematical coding methods. None of it
would work without them. And that turns out to be just the tip of a very
large iceberg.

A few weeks ago I looked through a randomly chosen issue of New
Scientist magazine. Of the fifty or so stories reported, there were a dozen
that — to my sensitive eye — involved a significant amount of mathematics.
Not one story mentioned this, though a few hinted about ‘models’ of the
process under study. When the contribution of mathematics is hidden that
far behind the scenes, it is hardly surprising that the media and the public
have little idea of what mathematics is, or what it is good for.

Sometimes mathematics should be kept behind the scenes. When I
listen to music in my car, I don’t want to have to think about the intrica-
cies of Galois fields. When NASA engineers are firing a space probe’s rock-
ets to nudge it into the right entry trajectory to prevent it burning up in the
Martian atmosphere, they don’t want to be worrying about differential
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equations. But someone has to do the sums, write the program, design the
algorithm, invent the concept, or prove the theorem. Someone has to
provide the tools for the job and make sure they are reliable. If neither the
media, nor the public, nor even practising scientists realise that this hidden
mathematics exists, we will stop training mathematicians, and the neces-
sary people will cease to exist too.

To most of us, ‘mathematics’ is something we did at school, and
promptly forgot. Curiously, many of us also think that what we did at
school was the whole of mathematics: all done and dusted. And pointless,
now thar we’ve got computers to do the sums for us. Some of us discover
there is more to it than that. Some go on to university, take a science
degree, and come to grips with statistics (in biology or medicine), differen-
tial equations (physics and engineering), or mathematical logic (computer
science). And the mental picture that we get is that there’s a certain amount
of genuinely wsefiel stuff (statistics, differential equations, mathematical
logic ...) plus a lot of highbrow intellectual fun and games that never has
been and never will be useful to anyone living in the ‘real world’.

Both of these views of mathematics are caricatures; real mathematics is
quite different. Today’s mathematics is intimately bound up with two key
areas of human knowledge and activity: the natural world, and the society
in which we live. Human understanding of our planet, and our universe,
rests heavily on the shoulders of mathematics. So does the day-to-day
working of our world. Take the hidden mathematics away, and today’s
world would fall to pieces. That statement applies to a lot of the apparent-
ly esoteric parts of the subject, as well as the more obviously applicable ones
— partly because mathematics is an interconnected whole, but also because
the esoteric concepts are often very general and very powerful. New and
unexpected applications are common.

The “classical’ areas of mathematics are mainly those that led up to, or
developed from, calculus — continuous mathematics, where everything can
be subdivided into pieces that are as tiny as you wish. Most core mathemat-
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ical physics and classical applied mathematics, such as acoustics or aerody-
namics or elasticity theory, are of this kind. An important newcomer is
discrete mathematics, which is suited to the digital age. Here the basic ingre-
dients come in indivisible packets; essentially, anything whose natural
description uses whole numbers or finite lists of symbols. Straddling both
areas is the theory of probability, a mathematical description of uncertainty.
Geometry is also crucial. Despite appearances to the contrary, mathe-
matics is primarily visual, and the formal symbolism tends to be closely
related to some kind of mental image. Today’s geometric thinking, however,
takes a variety of forms, few of them resembling the traditional geometry of
Euclid. Modern mathematics rightly places value on generality, when
appropriate. That naturally leads to a degree of abstraction, because the
focus of attention has to shift from ‘what objects are we looking at?’ to
‘what properties are we assuming?’ Logical proof remains central to the
enterprise; it'’s how mathematicians keep themselves and their subject
honest. Computers now play an increasingly central role. They seldom
solve problems without further thought, but they can create a huge
improvement in our understanding when they are used intelligently.
Mathematics, embodied in digital devices, has made technologies possi-
ble that seem to verge on magic. In February 2008 my wife and I spent two
weeks exploring the private tombs of the Egyptian nobility, from Cairo
down to Aswan. We took more than 1,400 photographs with two digital
cameras; the whole lot were recorded on three 1-gigabyte memory cards,
each the size of a postage stamp. The engineering feats involved are amaz-
ing, and they rest on all sorts of advances in materials science, photolithog-
raphy, even quantum mechanics. Those advances required a lot of
mathematics, as it happens, but I want to focus on just one aspect of digi-
tal cameras: data compression. The quantity of raw information required
to specify 1,400 high-resolution colour pictures is far larger than those
three cards can hold. Despite huge advances in miniaturisation, you simply

cannot get that amount of data into such a small space.
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Yet the pictures exist. I can print them out, or put them on the comput-
er screen. How do the camera manufacturers cram so much information into
so little memory? It may seem like magic, but the magic is mostly invisible
mathematics. The clue lies in the names of the image files, which on my
camera look something like P1000565.JPG. This tells the computer that the
file is formatted using the JPEG standard, issued by the Joint Photographic
Experts Group in 1992. This format uses various features of human vision,
and typical images, to ‘compress’ the image data substantially.

In general terms, a computer represents a picture as a list of numbers.
The list represents a rectangular array of tiny picture elements, called
pixels, and the numbers describe the colour and the brightness of each
pixel. If you do the sums, however, you find that there’s nowhere near
enough space in a memory card to hold all the pictures that undeniably are
in there. It’s not just like trying to get a quart into a pint pot: more like
getting a tanker-load of milk into a pint pot.

This problem is a common one in the digital world, and it is usually
tackled by compressing the data — reducing the quantity of information
while retaining enough of it to do the job. Just as you can get more luggage
into the car if you load it in the right way, so you can get more of the
important data into a computer file if you leave out stuff that’s not really
relevant, or take advantage of certain inbuilt redundancies. For instance,
many photographs have a large area of blue sky. Instead of repeating the
code for ‘blue’ thousands of times, once for each pixel, we could tell the
computer ‘colour everything in this rectangle blue’, and specify the rectan-
gle by listing its corners. Suddenly thousands of numbers collapse to a few
dozen. That’s not how JPEG works, but it shows how redundancies in a list
of numbers may make the list compressible. The actual procedure is care-
fully tailored to what can be done efficiently inside a small camera. The
details don’t really matter for my main point, but I want you to appreciate
that there are details, which use several different mathematical ideas. So

please indulge me while I tell you just how cunning the process is.
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JPEG starts by splitting the data into three separate arrays. One lists
how bright each pixel is. The other two take advantage of the fact that the
colours perceived by the eye can be specified as points in a plane, the
‘colour triangle’. A plane is two-dimensional, so each point can be defined
using just two numbers, its horizontal and vertical coordinates. These
‘colour components’ form the other two lists. The human eye is more
sensitive to variations in brightness than in colour, so the two lists of colour
components can be shortened — usually they are reduced to one quarter of
their original size — by using a coarser list of colours.

The next step uses a trick introduced by the French mathematician
Joseph Fourier in 1824 — a year after his election to the Royal Society, as it
happens — who at the time was working on the flow of heat. In general
terms, Fourier’s idea was to represent a pattern of numbers by combining
specific patterns with different frequencies — much as the note played by a
clarinet is made up from a fundamental ‘pure’ note and various higher-
pitched ‘harmonics’, all added together in suitable proportions. JPEG uses
a similar trick for spatial patterns of numbers, treating each of its three
arrays in the same way. First, the array is broken up into 8x8 blocks of
pixels. Then each block is transformed into a list of its spatial frequencies
in the horizontal and vertical directions. Roughly, this splits the pattern
into black-and-white stripes of various thicknesses, and works out how
much of each stripe you need to reconstruct the actual image. This step
employs a fast Fourier transform, exploiting number-theoretic features of
binary numerals to speed up a difficult computation; this is why 8x8 blocks
are used, eight being a power of two. The Fourier transform does not
compress the data, but rewrites it in a compressible form. The eye is fairly
insensitive to high-frequency stripes, so these can be ignored. Medium-
frequency stripes can be specified using smaller numbers, which occupy less
space on the memory card.

This is not the end: two more tricks are used to squash even more

pictures into the same space. If you run through the resulting array of
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numbers in a zigzag order, from low frequency components to high ones,
you typically find runs of repeated numbers, suchas 77777777 7.
Coding this as ‘9 consecutive 7°s’ converts it to 9 7, which is shorter.
Finally, another coding method called Huffman coding is used on the
resulting file, which compresses it even further.

So JPEG coding is quite complex, with sophisticated mathematical
features. You don’t need to know how it works to use your digital camera,
but without the underlying ideas, that camera could never have been made.
Now think of future developments, video cameras, cramming a camera
into a mobile phone along with dozens of other applications ... We desper-
ately need people who can understand that sort of mathematics.

At any rate, my wife and I were able to take lots of pictures without
carrying sacks full of film because a lot of mathematically sophisticated
engineers noticed that something that a nineteenth-century Frenchman
invented for a completely different reason happened to have an unexpect-
ed use. But the hidden mathematics behind our holiday didn’t stop there.
Without a lot of other mathematics, often with similarly impractical or
outmoded origins, we could never have got to Egypt to take the pictures.

Our flight was booked over the Internet and all Internet communica-
tions rely on error-correcting codes to ensure that messages are not garbled
along the way by electrical interference. Like the codes used by the Mars
Rovers, these techniques rely heavily on abstract algebra. The airline’s
schedules were designed using mathematical methods to improve efficien-
cy — graph theory and linear algebra. Then there was radar, weather-fore-
casting, even the statistical analysis of different breeds of vegetables that
governed the crops from which the airline food was made.

None of this is much use if the aircraft never gets to its intended desti-
nation. In the early days of navigation, when the great European explorers
were mapping the globe in small wooden sailing ships, navigation was a major
consumer of mathematics. Even finding the size and shape of the Earth
involved mathematical calculations, as well as experimental observations.
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Today we have GPS, the Global Positioning System, which comprises
about fifteen satellites orbiting the Earth, sending out signals. A triumph of
electronics and engineering, obviously. But mathematics?

Leaving aside the heavy use of mathematics in designing and building
launch vehicles and satellites, and in calculating orbital dynamics, let me
focus solely on the signalling system that GPS uses. Each satellite transmits
a signal, which can be used to work out how far away the satellite is from
the GPS receiver (on board the aeroplane, ship, car, yacht, or inside some-
one’s mobile phone). These distances, coupled with knowledge of the posi-
tions of the satellites, make it possible to calculate the location of the
receiver on the surface of the Earth. That’s another highly mathematical
step, which I will also ignore.

How do the signals convey distances?

Imagine that the satellite is playing a tune, and that you have access to
a second ‘copy’ of that tune, being sent out from a known source that is in
synchrony with the satellite. Because the satellite is further away than the
reference source, the signal from the satellite is slightly delayed, by a time
equal to the difference in distances divided by the speed of light. The time
delay can be measured, very accurately, and the distance is obtained by
multiplying that by the speed of light.

Instead of tunes, the signals are sequences of pseudo-random numbers
— apparently patternless sequences generated by a fixed mathematical
recipe. Both the satellite and the reference source know this recipe, so they
can generate and recognise the same signals. So here we find a very practi-
cal application of the mathematics of pseudo-random numbers. If you use
SatNav in your car, you are a major consumer of the hidden mathematics
that runs our world.

Still pursuing the hidden mathematics that made my holiday possible,
there is the small matter of designing an aircraft that stays up, one of the
heaviest uses of mathematics in the whole enterprise. Nearly all of the
analysis of airflow past an aircraft nowadays is done using ‘numerical wind-
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tunnels’, which are mathematical simulations. They are much easier to use
than physical wind-tunnels, and if anything, more accurate. They have
innumerable other applications. They are essential to the design of
Formula 1 and NASCAR racing cars, where effective aerodynamics is
needed to keep the car on the track and reduce air resistance. If that’s not
green enough for you, the same techniques improve the fuel efficiency of
ordinary road vehicles. Even the dynamics of a football has been analysed
mathematically, with useful practical implications about how to make the
ball behave unpredictably, which can help it get past the keeper into the
goal. Computational Fluid Dynamics also has medical applications to
blood flow and heart disease.

This makes the point that mathematics also saves lives. Have you had a
medical scan recently? How do you think the scanner works out what’s
inside you? There’s a whole branch of mathematics devoted to such ques-
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tions. Are you concerned about crime? The FBI uses ‘wavelets’, a very recent
piece of mathematics, to analyse and record fingerprint information to help
catch criminals. Other police forces use similar techniques. Do you use oil
or natural gas, for heating, cooking, or transport? The oil companies use
powerful mathematical techniques to find out what the rocks miles under-
ground look like, based on the echoes from explosions at the surface. Do
you use anything with a spring in it — ballpoint pen, video recorder,
mattress? The spring-making industry uses mathematics for quality control.

Another huge area that relies on mathematics is science, and science is
our most successful method for understanding the natural world. The
development of science, and that of mathematics, have gone hand in hand
for about five hundred years. Newton invented calculus to understand the
movements of the planets. Independently, Gottfried Leibniz developed
much the same ideas for purely intellectual reasons. These two sources of
mathematical inspiration can be roughly characterised as ‘applied’ and
‘pure’ mathematics. The main differences are motivation and attitude,
rather than content. The same mathematical concept may appear in the
solution of Fermat’s last theorem (pure mathematics) or in the construc-
tion of a secure code for Internet banking (applied mathematics). Some
areas are traditionally considered as being ‘pure’, others as ‘applied’, but
these are convenient distinctions, not impassable barriers. Today’s science
is increasingly multi-disciplinary; so is mathematics.

Initially, the main beneficiaries of mathematical techniques were the
physical sciences, and these are still the areas in which the use of mathemat-
ics is greatest. But the biological and medical sciences are catching up
rapidly, and some of the most interesting new problems for research math-
ematicians are coming out of biology. A century or two from now we will
look back at today’s Newtons and Booles, and understand how vital their
work has been to the development of our society. Provided we do not lose
sight of the hidden mathematics that rules our world — because if we do,

those advances will never happen.

[AN STEWART e ——— =]



