WHEN AM I GOING
TO USE THIS?

ight now, in a classroom somewhere in the world, a student is

mouthing off to her math teacher. The teacher has just asked

her to spend a substantial portion of her weekend computing a
list of thirty definite integrals.

There are other things the student would rather do. There is, in fact,
hardly anything she would not rather do. She knows this quite clearly, be-
cause she spent a substantial portion of the previous weekend computing
a different—but not very different—Ilist of thirty definite integrals. She
doesn’t see the point, and she tells her teacher so. And at some point in
this conversation, the student is going to ask the question the teacher
fears most:

“When am I going to use this?”

Now the math teacher is probably going to say something like:

“I know this seems dull to you, but remember, you don’t know what
career you'll choose—you may not see the relevance now, but you might
go into a field where it’ll be really important that you know how to com-
pute definite integrals quickly and correctly by hand.”

This answer is seldom satisfying to the student. That’s because it’s
a lie. And the teacher and the student both know it’s a lie. The number
of adults who will ever make use of the integral of (1 — 3x + 4x?)? dx, or



the formula for the cosine of 36, or synthetic division of polynomials, can
be counted on a few thousand hands.

The lie is not very satisfying to the teacher, either. I should know: in
my many years as a math professor I've asked many hundreds of college
students to compute lists of definite integrals.

Fortunately, there’s a better answer. It goes something like this:

“Mathematics is not just a sequence of computations to be carried
out by rote until your patience or stamina runs out—although it might
seem that way from what you've been taught in courses called mathe-
matics. Those integrals are to mathematics as weight training and calis-
thenics are to soccer. If you want to play soccer—I mean, really play, at a
competitive level—you've got to do a lot of boring, repetitive, apparently
pointless drills. Do professional players ever use those drills? Well, you
won’t see anybody on the field curling a weight or zigzagging between
traffic cones. But you do see players using the strength, speed, insight,
and flexibility they built up by doing those drills, week after tedious
week. Learning those drills is part of learning soccer.

“If you want to play soccer for a living, or even make the varsity
team, you're going to be spending lots of boring weekends on the practice
field. There’s no other way. But now here’s the good news. If the drills
are too much for you to take, you can still play for fun, with friends. You
can enjoy the thrill of making a slick pass between defenders or scoring
from distance just as much as a pro athlete does. You'll be healthier and
happier than you would be if you sat home watching the professionals
on TV,

“Mathematics is pretty much the same. You may not be aiming for a
mathematically oriented career. That’s fine—most people aren’t. But you
can still do math. You probably already are doing math, even if you don’t
call it that. Math is woven into the way we reason. And math makes you
better at things. Knowing mathematics is like wearing a pair of X-ray
specs that reveal hidden structures underneath the messy and chaotic
surface of the world. Math is a science of not being wrong about things,
its techniques and habits hammered out by centuries of hard work and
argument. With the tools of mathematics in hand, you can understand

the world in a deeper, sounder, and more meaningful way. All you need is

a coach, or even just a book, to teach you the rules and some basic tac-
tics. I will be your coach. I will show you how.”

For reasons of time, this is seldom what I actually say in the class-
room. But in a book, there’s room to stretch out a little more. hope to
back up the grand claims I just made by showing you that the problems
we think about every day—problems of politics, of medicine, of com-
merce, of theology—are shot through with mathematics. Understanding
this gives you access to insights accessible by no other means.

Even if T did give my student the full inspirational speech, she
might—if she is really sharp—remain unconvinced.

“That sounds good, Professor,” she’ll say. “But it’s pretty abstract.
You say that with mathematics at your disposal you can get things right
you'd otherwise get wrong. But what kind of things? Give me an actual
example.”

And at that point I would tell her the story of Abraham Wald and the
missing bullet holes.

ABRAHAM WALD AND THE MISSING BULLET HOLES

This story, like many World War II stories, starts with the Nazis hound-
ing a Jew out of Europe and ends with the Nazis regretting it. Abraham
Wald was born in 1902 in what was then the city of Klausenburg in what
was then the Austro-Hungarian Empire. By the time Wald was a teen-
ager, one World War was in the books and his hometown had become
Cluj, Romania. He was the grandson of a rabbi and the son of a kosher
baker, but the younger Wald was a mathematician almost from the start.
His talent for the subject was quickly recognized, and he was admitted
to study mathematics at the University of Vienna, where he was drawn
to subjects abstract and recondite even by the standards of pure mathe-
matics: set theory and metric spaces.

But when Wald’s studies were completed, it was the mid-1930s, Aus-
tria was deep in economic distress, and there was no possibility that a
foreigner could be hired as a professor in Vienna. Wald was rescued by
a job offer from Oskar Morgenstern. Morgenstern would later immigrate



to the United States and help invent game theory, but in 1933 he was the
director of the Austrian Institute for Economic Research, and he hired
Wald at a small salary to do mathematical odd jobs. That turned out to
be a good move for Wald: his experience in economics got him a fel-
lowship offer at the Cowles Commission, an economic institute then
located in Colorado Springs. Despite the ever-worsening political situa-
tion, Wald was reluctant to take a step that would lead him away from
pure mathematics for good. But then the Nazis conquered Austria, mak-
ing Wald’s decision substantially easier. After just a few months in Colo-
rado, he was offered a professorship of statistics at Columbia; he packed
up once again and moved to New York.

And that was where he fought the war.

The Statistical Research Group (SRG), where Wald spent much of
World War II, was a classified program that yoked the assembled might
of American statisticians to the war effort—something like the Manhat-
tan Project, except the weapons being developed were equations, not
explosives. And the SRG was actually in Manhattan, at 401 West 118th
Street in Morningside Heights, just a block away from Columbia Univer-
sity. The building now houses Columbia faculty apartments and some
doctor’s offices, but in 1943 it was the buzzing, sparking nerve center of
wartime math. At the Applied Mathematics Group~Columbia, dozens
of young women bent over Marchant desktop calculators were calculat-
ing formulas for the optimal curve a fighter should trace out through the
air in order to keep an enemy plane in its gunsights. In another apart-
ment, a team of researchers from Princeton was developing protocols for
strategic bombing. And Columbia’s wing of the atom bomb project was
right next door.

But the SRG was the most high-powered, and ultimately the most
influential, of any of these groups. The atmosphere combined the in-
tellectual openness and intensity of an academic department with the
shared sense of purpose that comes only with high stakes. “When we
made recommendations,” W. Allen Wallis, the director, wrote, “frequently
things happened. Fighter planes entered combat with their machine guns
loaded according to Jack Wolfowitz’s' recommendations about mixing

* Paul’s dad.

types of ammunition, and maybe the pilots came back or maybe they
didn’t. Navy planes launched rockets whose propellants had been ac-
cepted by Abe Girshick’s sampling-inspection plans, and maybe the rock-
ets exploded and destroyed our own planes and pilots or maybe they
destroyed the target.”

The mathematical talent at hand was equal to the gravity of the task.
In Wallis’s words, the SRG was “the most extraordinary group of statisti-
cians ever organized, taking into account both number and quality.” Fred-
erick Mosteller, who would later found Harvard’s statistics department,
was there. So was Leonard Jimmie Savage, the pioneer of decision theory
and great advocate of the field that came to be called Bayesian statistics.
Norbert Wiener, the MIT mathematician and the creator of cybernetics,
dropped by from time to time. This was a group where Milton Fried-
man, the future Nobelist in economics, was often the fourth-smartest
person in the room.

The smartest person in the room was usually Abraham Wald. Wald
had been Allen Wallis’s teacher at Columbia, and functioned as a kind of
mathematical eminence to the group. Still an “enemy alien,” he was not
technically allowed to see the classified reports he was producing; the
joke around SRG was that the secretaries were required to pull each
sheet of notepaper out of his hands as soon as he was finished writing on
it. Wald was, in some ways, an unlikely participant. His inclination, as it
always had been, was toward abstraction, and away from direct applica-
tions. But his motivation to use his talents against the Axis was obvious.
And when you needed to turn a vague idea into solid mathematics, Wald

was the person you wanted at your side.

So here’s the question. You don’t want your planes to get shot down by
enemy fighters, so you armor them. But armor makes the plane heavier,
and heavier planes are less maneuverable and use more fuel. Armoring
the planes too much is a problem; armoring the planes too little is a
problem. Somewhere in between there’s an optimum. The reason you

* Savage was almost totally blind, able to see only out of one corner of one eye, and at one point
spent six months living only on pemmican in order to prove a point about Arctic exploration. Just
thought that was worth mentioning.



have a team of mathematicians socked away in an apartment in New
York City is to figure out where that optimum is.

The military came to the SRG with some data they thought might be
useful. When American planes came back from engagements over Eu-
rope, they were covered in bullet holes. But the damage wasn’t uniformly
distributed across the aircraft. There were more bullet holes in the fuse-

lage, not so many in the engines.

Section of plane Bullet holes per square foot
Engine , 1.11

Fuselage 1.73

Fuel system 1.55

Rest of the plane 1.8

The officers saw an opportunity for efficiency; you can get the same
protection with less armor if you concentrate the armor on the places
with the greatest need, where the planes are getting hit the most. But ex-
actly how much more armor belonged on those parts of the plane? That
was the answer they came to Wald for. It wasn’t the answer they got.

The armor, said Wald, doesn’t go where the bullet holes are. It goes
where the bullet holes aren’t: on the engines.

Wald’s insight was simply to ask: where are the missing holes? The
ones that would have been all over the engine casing, if the damage had
been spread equally all over the plane? Wald was pretty sure he knew.
The missing bullet holes were on the missing planes. The reason planes
were coming back with fewer hits to the engine is that planes that got hit
in the engine weren’t coming back. Whereas the large number of planes
returning to base with a thoroughly Swiss-cheesed fuselage is pretty
strong evidence that hits to the fuselage can (and therefore should) be
tolerated. If you go to the recovery room at the hospital, you'll see a lot
more people with bullet holes in their legs than people with bullet holes
in their chests. But that’s not because people don’t get shot in the chest;
it’s because the people who get shot in the chest don’t recover.

Here’s an old mathematician’s trick that makes the picture perfectly

clear: set some variables to zero. In this case, the variable to tweak is the
probability that a plane that takes a hit to the engine manages to stay in
the air. Setting that probability to zero means a single shot to the engine
is guaranteed to bring the plane down. What would the data look like
then? You'd have planes coming back with bullet holes all over the wings,
the fuselage, the nose—but none at all on the engine. The military ana-
lyst has two options for explaining this: either the German bullets just
happen to hit every part of the plane but one, or the engine is a point of
total vulnerability. Both stories explain the data, but the latter makes a
lot more sense. The armor goes where the bullet holes aren’t.

Wald’s recommendations were quickly put into effect, and were still
being used by the navy and the air force through the wars in Korea and
Vietnam. I can’t tell you exactly how many American planes they saved,
though the data-slinging descendants of the SRG inside today’s military
no doubt have a pretty good idea. One thing the American defense es-
tablishment has traditionally understood very well is that countries don’t
win wars just by being braver than the other side, or freer, or slightly
preferred by God. The winners are usually the guys who get 5% fewer of
their planes shot down, or use 5% less fuel, or get 5% more nutrition into
their infantry at 95% of the cost. That’s not the stuff war movies are
made of, but it’s the stuff wars are made of. And there’s math every step
of the way.

Why did Wald see what the officers, who had vastly more knowledge and
understanding of aerial combat, couldn’t? It comes back to his math-
trained habits of thought. A mathematician is always asking, “What as-
sumptions are you making? And are they justified?” This can be annoying.
But it can also be very productive. In this case, the officers were making
an assumption unwittingly: that the planes that came back were a ran-
dom sample of all the planes. If that were true, you could draw conclu-
sions about the distribution of bullet holes on all the planes by examining
the distribution of bullet holes on only the surviving planes. Once you
recognize that you've been making that hypothesis, it only takes a mo-
ment to realize it’s dead wrong; there’s no reason at all to expect the

planes to have an equal likelihood of survival no matter where they get



hit. In a piece of mathematical lingo we’ll come back to in chapter 15,
the rate of survival and the location of the bullet holes are correlated.

Wald’s other advantage was his tendency toward abstraction. Wolfo-
witz, who had studied under Wald at Columbia, wrote that the problems
he favored were “all of the most abstract sort,” and that he was “always
ready to talk about mathematics, but uninterested in popularization and
special applications.”

Wald’s personality made it hard for him to focus his attention on ap-
plied problems, it’s true. The details of planes and guns were, to his eye,
so much upholstery—he peered right through to the mathematical struts
and nails holding the story together. Sometimes that approach can lead
you to ignore features of the problem that really matter. But it also lets
you see the common skeleton shared by problems that look very differ-
ent on the surface. Thus you have meaningful experience even in areas
where you appear to have none.

To a mathematician, the structure underlying the bullet hole prob-
lem is a phenomenon called survivorship bias. It arises again and again, in
all kinds of contexts. And once you’re familiar with it, as Wald was,
you're primed to notice it wherever it’s hiding.

Like mutual funds. Judging the performance of funds is an area
where you don’t want to be wrong, even by a little bit. A shift of 1% in
annual growth might be the difference between a valuable financial asset
and a dog. The funds in Morningstar’s Large Blend category, whose mu-
tual funds invest in big companies that roughly represent the S&P 500,
look like the former kind. The funds in this class grew an average of
178.4% between 1995 and 2004: a healthy 10.8% per year.” Sounds like
you’d do well, if you had cash on hand, to invest in those funds, no?

Well, no. A 2006 study by Savant Capital shone a somewhat colder
light on those numbers. Think again about how Morningstar generates
its number. It’s 2004, you take all the funds classified as Large Blend,
and you see how much they grew over the last ten years.

But something’s missing: the funds that aren’t there. Mutual funds
don't live forever. Some flourish, some die. The ones that die are, by and
large, the ones that don’t make money. So judging a decade’s worth of

* To be fair, the S&P 500 index itself did even better, gaining 212.5% over the same peried.

mutual funds by the ones that still exist at the end of the ten years is
like judging our pilots’ evasive maneuvers by counting the bullet holes in
the planes that come back. What would it mean if we never found more
than one bullet hole per plane? Not that our pilots are brilliant at dodg-
ing enemy fire, but that the planes that got hit twice went down in
flames.

The Savant study found that if you included the performance of the
dead funds together with the surviving ones, the rate of return dropped
down to 134.5%, a much more ordinary 8.9% per year. More recent
research backed that up: a comprehensive 2011 study in the Review of
Finance covering nearly 5,000 funds found that the excess return rate of
the 2,641 survivors is about 20% higher than the same figure recom-
puted to include the funds that didn’t make it. The size of the survivor-
ship effect might have surprised investors, but it probably wouldn’t have
surprised Abraham Wald.

MATHEMATICS IS THE EXTENSION OF
COMMON SENSE BY OTHER MEANS

At this point my teenaged interlocutor is going to stop me and ask, quite
reasonably: Where’s the math? Wald was a mathematician, that’s true,
and it can’t be denied that his solution to the problem of the bullet holes
was ingenious, but what’s mathematical about it? There was no trig iden-
tity to be seen, no integral or inequality or formula.

First of all: Wald did use formulas. I told the story without them,
because this is just the introduction. When you write a book explain-
ing human reproduction to preteens, the introduction stops short of the
really hydraulic stuff about how babies get inside Mommy’s tummy. In-
stead, you start with something more like “Everything in nature changes;
trees lose their leaves in winter only to bloom again in spring; the humble
caterpillar enters its chrysalis and emerges as a magnificent butterfly.
You are part of nature too, and . .

That’s the part of the book we’re in now.

But we’re all adults here. Turning off the soft focus for a second,
here’s what a sample page of Wald’s actual report looks like:
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that the decrease from 9y to q. lies between definite limits.

i+l
Therefore, both an upper and lower bound for the Ow can be

obtained.
We assume that
MO £ 9540 £ N9

where ww < ww < 1 and such that the expression

m..
|aaap1| -
umw .a.-HUAHmo H>w
A 2
1

is satisfied.

The exact solution is tedious but close approximations to the
upper and lower bounds to the ow for i < n can be obtained by

the following procedure. ‘The set of hypothetical data used is
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Condition A is satisfied, since by substitution
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The first step is to solve equation 66. This involves the
solution of the following four equations for positive roots mo~
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I hope that wasn’t too shocking.

Still, the real idea behind Wald’s insight doesn’t require any of the
formalism above. We've already explained it, using no mathematical no-
tation of any kind. So my student’s question stands. What makes that _
math? Isn’t it just common sense? _

Yes. Mathematics is common sense. On some basic level, this is clear.

How can you explain to someone why adding seven things to five things
yields the same result as adding five things to seven? You can’t: that fact
is baked into our way of thinking about combining things together.
Mathematicians like to give names to the phenomena our common sense
describes: instead of saying, “This thing added to that thing is the same
thing as that thing added to this thing” we say, “Addition is commuta-

tive.” Or, because we like our symbols, we write:
For any choice of aand b,a+b=b +a.

Despite the official-looking formula, we are talking about a fact in-
stinctively understood by every child.

Multiplication is a slightly different story. The formula looks pretty
similar:

For any choice of aand b,axb=b x a.

The mind, presented with this statement, does not say “no duh”
quite as instantly as it does for addition. Is it “common sense” that two
sets of six things amount to the same as six sets of two?

Maybe not; but it can become common sense. Here’s my earliest math-
ematical memory. I'm lying on the floor in my parents’ house, my cheek
pressed against the shag rug, looking at the stereo. Very probably I am
listening to side two of the Beatles’ Blue Album. Maybe I'm six. This
is the seventies, and therefore the stereo is encased in a pressed wood
panel, which has a rectangular array of airholes punched into the side.
Eight holes across, six holes up and down. So I'm lying there, looking at
the airholes. The six rows of holes. The eight columns of holes. By focus-
ing my gaze in and out I could make my mind flip back and forth be-
tween seeing the rows and seeing the columns. Six rows with eight holes
each. Eight columns with six holes each.

And then [ had it—eight groups of six were the same as six groups of
eight. Not because it was a rule I'd been told, but because it could not be
any other way. The number of holes in the panel was the number of holes
in the panel, no matter which way you counted them.



