Theorem

Suppose we have a simple connected planar graph. Let V be the number of vertices and E the number of edges. Then $3 V-6 \geq E$.

- Let's pretend our graph is the floor plan of a house.
- So each "room," counting the outside, is a face.
- Suppose you have to paint the walls (inside and out).
- How many walls will you have to paint?

- Let's pretend our graph is the floor plan of a house.
- So each "room," counting the outside, is a face.
- Suppose you have to paint the walls (inside and out).
- How many walls will you have to paint?

- Let's pretend our graph is the floor plan of a house.
- So each "room," counting the outside, is a face.
- Suppose you have to paint the walls (inside and out).
- How many walls will you have to paint?

- Let's pretend our graph is the floor plan of a house.
- So each "room," counting the outside, is a face.
- Suppose you have to paint the walls (inside and out).
- How many walls will you have to paint?

- Let's pretend our graph is the floor plan of a house.
- So each "room," counting the outside, is a face.
- Suppose you have to paint the walls (inside and out).
- How many walls will you have to paint?

- Let's pretend our graph is the floor plan of a house.
- So each "room," counting the outside, is a face.
- Suppose you have to paint the walls (inside and out).
- How many walls will you have to paint?

Answer \#1:
Every room has at least three walls, so the number of walls to paint is at least $3 F$.

Answer \#1:
Every room has at least three walls, so the number of walls to paint is at least $3 F$.

Answer \#1:
Every room has at least three walls, so the number of walls to paint is at least $3 F$.

Answer \#1:
Every room has at least three walls, so the number of walls to paint is at least $3 F$.

Answer \#1:
Every room has at least three walls, so the number of walls to paint is at least $3 F$.

Answer \#1:
Every room has at least three walls, so the number of walls to paint is at least $3 F$.

Answer \#1:
Every room has at least three walls, so the number of walls to paint is at least $3 F$.

$$
W \geq 3 F
$$

Answer \#2:

Everv edge has two sides, so the number of walls to paint equals $2 E$.

$$
W=2 E .
$$

Answer \#2:

Everv edge has two sides, so the number of walls to paint equals $2 E$.

$$
W=2 E .
$$

Answer \#2:
Every edae has two sides, so the number of walls to paint equals $2 E$.

$$
W=2 E .
$$

Answer \#2:

Every edge has two sides, so the number of walls to paint equals $2 E$.

$$
W=2 E .
$$

Thus $2 E=W$ and $W \geq 3 F$, so
$2 E \geq 3 F$.
By Euler's Formula, $V-E+F=2$ so $F=2-V+E$.

Thus
so
so
Subtract 2E from both sides: Add 3 V to both sides:
Subtract 6 from both sides:

$0 \geq 6-3 V+E$
$3 V \geq 6+E$
$3 V-6 \geq E$

Theorem
If a simple connected graph is planar, then $3 \mathrm{~V}-6 \geq E$.

Thus $2 E=W$ and $W \geq 3 F$, so $2 E \geq 3 F$.

By Euler's Formula, $V-E+F=2$ so $F=2-V+E$.

Subtract $2 E$ from both sides: Add 3 V to both sides: Subtract 6 from both sides:

$0 \geq 6-3 V+E$
$3 V \geq 6+E$

Theorem
If a simple connected graph is planar, then $3 V-6 \geq E$.

Thus $2 E=W$ and $W \geq 3 F$, so $2 E \geq 3 F$.

By Euler's Formula, $V-E+F=2$ so $F=2-V+E$.

Theorem
If a simple connected graph is planar, then $3 V-6 \geq E$.

Thus $2 E=W$ and $W \geq 3 F$, so $2 E \geq 3 F$.

By Euler's Formula, $V-E+F=2$ so $F=2-V+E$.

Thus
$2 E \geq 3 F$

Subtract $2 E$ from both sides: Add 3 V to both sides: Subtract 6 from both sides:

Theorem
If a simple connected graph is planar, then $3 V-6 \geq E$.

Thus $2 E=W$ and $W \geq 3 F$, so $2 E \geq 3 F$.

By Euler's Formula, $V-E+F=2$ so $F=2-V+E$.

Thus
$2 E \geq 3 F$
so
$2 E \geq 3(2-V+E)$
Subtract $2 E$ from both sides: Add 3 V to both sides:
Subtract 6 from both sides:

Thus $2 E=W$ and $W \geq 3 F$, so $2 E \geq 3 F$.

By Euler's Formula, $V-E+F=2$ so $F=2-V+E$.

Thus
so
so
$2 E \geq 3 F$
$2 E \geq 3(2-V+E)$
$2 E \geq 6-3 V+3 E$

Thus $2 E=W$ and $W \geq 3 F$, so $2 E \geq 3 F$.

By Euler's Formula, $V-E+F=2$ so $F=2-V+E$.

Thus
so
so
Subtract $2 E$ from both sides:

Subtract 6 from both sides:

$$
\begin{aligned}
2 E & \geq 3 F \\
2 E & \geq 3(2-V+E) \\
2 E & \geq 6-3 V+3 E \\
0 & \geq 6-3 V+E
\end{aligned}
$$

$$
3 V \geq 6+E
$$

Theorem
If a simple connected graph is planar, then $3 \mathrm{~V}-6 \geq E$.

Thus $2 E=W$ and $W \geq 3 F$, so $2 E \geq 3 F$.

By Euler's Formula, $V-E+F=2$ so $F=2-V+E$.

Thus
so
so
Subtract $2 E$ from both sides:
Add $3 V$ to both sides:

$$
\begin{aligned}
2 E & \geq 3 F \\
2 E & \geq 3(2-V+E) \\
2 E & \geq 6-3 V+3 E \\
0 & \geq 6-3 V+E \\
3 V & \geq 6+E
\end{aligned}
$$

Thus $2 E=W$ and $W \geq 3 F$, so $2 E \geq 3 F$.

By Euler's Formula, $V-E+F=2$ so $F=2-V+E$.
Thus
so
so

Subtract $2 E$ from both sides: Add 3 V to both sides:

$$
\begin{aligned}
2 E & \geq 3 F \\
2 E & \geq 3(2-V+E) \\
2 E & \geq 6-3 V+3 E \\
0 & \geq 6-3 V+E \\
3 V & \geq 6+E
\end{aligned}
$$

Subtract 6 from both sides: $3 V-6 \geq E$

Thus $2 E=W$ and $W \geq 3 F$, so
$2 E \geq 3 F$.

By Euler's Formula, $V-E+F=2$ so $F=2-V+E$.

Thus
so
so
Subtract $2 E$ from both sides: Add 3 V to both sides:
Subtract 6 from both sides: $3 V-6 \geq E$

Theorem

If a simple connected graph is planar, then $3 V-6 \geq E$.

Conclusion

Corollary

The complete graph K_{5} is not planar.
Proof.

- We know that K_{5} has 5 vertices and 10 edges.
- If K_{5} actually were planar, then by our theorem,
$3 V-6 \geq E$.
- But $3 \cdot 5-6=15-6=9$, which is $\not \geq 10$.
- So this is impossible! Thus K_{5} is not planar.

Conclusion

Corollary

The complete graph K_{5} is not planar.

Proof.

- We know that K_{5} has 5 vertices and 10 edges.
- If K_{5} actually were planar, then by our theorem, $3 V-6 \geq E$.
- But $3 \cdot 5-6=15-6=9$, which is $¥ 10$.
- So this is impossible! Thus K_{5} is not planar.

Warning

Theorem

If a graph is planar, then $3 V-6 \geq E$.
\square
If $3 V-6 \geq E$, then the graph is planar.

Warning

Theorem

If a graph is planar, then $3 V-6 \geq E$.

Idea
If $3 V-6 \geq E$, then the graph is planar.

Warning

Theorem

If a graph is planar, then $3 V-6 \geq E$.

If $3 V-6 \geq E$, then the graphis pranar.

Warning

Theorem

If a graph is planar, then $3 V-6 \geq E$.

$$
V=6 \text { and } E=9 \text {, so } 3 V-6=12 \geq 9,
$$ but this graph is not planar!

