16.9 The Divergence Theorem

- Motivation:
- Divergence of a vector function:

- 1. Calculate the divergence of $\mathbf{F} = \langle e^x \sin y, e^x \cos y, z \rangle$.
- Divergence Theorem: Let E be a simple solid region in \mathbb{R}^3 and $S = \partial E$ be the boundary surface of E with outward orientation. Let \mathbf{F} be a vector field whose components have continuous first-order partial derivatives. Then

$$\iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S} = \iiint_{E} \operatorname{div}(\mathbf{F}) \ dV.$$

• Discussion:

2. Verify the Divergence Theorem for the vector field $\mathbf{F}(x,y,z) = \langle 2x, -yz, z^2 \rangle$ over the closed region E, the solid bounded by the paraboloid $z = x^2 + y^2$ capped by the disk $x^2 + y^2 \leq 1$ in the plane z = 1.

3. Use the Divergence Theorem to calculate the flux of the vector field $\mathbf{F} = \langle -x^3, -y^3, 3z^2 \rangle$ across the boundary \mathcal{S} of

$$E = \{(x, y, z) : x^2 + y^2 < 16, \ 0 < z < 5\}.$$

4. Evaluate the surface integral $\iint_{\mathcal{S}} \mathbf{F} + d\mathbf{S}$, where

$$\mathbf{F} = \left\langle x^2 - z^2, \ e^{z^2} - \cos x, \ y^3 \right\rangle$$

and \mathcal{S} is the boundary of the region E bounded by

$$x + 2y + 4z = 12$$

and the coordinate planes in the first octant.