- Circulation-a line integral of a vector field around a closed curve. What is the circulation of a gradient vector field?
- Suppose \mathcal{C} is a simple closed curve that forms the boundary of a region \mathcal{D} in the $\boldsymbol{x} \boldsymbol{y}$-plane. Let \mathcal{C} be oriented so that traversing \mathcal{C} in the positive direction keeps \mathcal{D} to the left, i.e. counterclockwise orientation. The corresponding line integral of $\mathbf{F}(\boldsymbol{x}, \boldsymbol{y})=\langle\boldsymbol{P}(\boldsymbol{x}, \boldsymbol{y}), \boldsymbol{Q}(\boldsymbol{x}, \boldsymbol{y})\rangle$ around \mathcal{C} is denoted by $\oint_{\mathcal{C}} \boldsymbol{P}(\boldsymbol{x}, \boldsymbol{y}) \boldsymbol{d} \boldsymbol{x}+\boldsymbol{Q}(\boldsymbol{x}, \boldsymbol{y}) \boldsymbol{d} \boldsymbol{y}$.
- Green's Theorem: Let \mathcal{D} be a domain whose boundary $\mathcal{C}=\boldsymbol{\partial \mathcal { D }}$ is a simple closed piecewise smooth curve in the plane, positively oriented (counterclockwise). If $\mathbf{F}=\langle\boldsymbol{P}, \boldsymbol{Q}\rangle$, where $\boldsymbol{P}(\boldsymbol{x}, \boldsymbol{y})$ and $\boldsymbol{Q}(\boldsymbol{x}, \boldsymbol{y})$ are continuous and have continuous partial derivatives, then

1. Evaluate $\oint_{\mathcal{C}} \boldsymbol{x}^{2} \boldsymbol{y} \boldsymbol{d} \boldsymbol{x}+\boldsymbol{x} \boldsymbol{d} \boldsymbol{y}$ using Green's Theorem, and then check the answer by evaluating the line integral directly, where \mathcal{C} is the triangle connecting the points $(\mathbf{0}, \mathbf{0}),(\mathbf{1}, \mathbf{0})$, and $(1,2)$, oriented counterclockwise.
2. Find the work done by the force field $\mathbf{F}=\left\langle\boldsymbol{e}^{\boldsymbol{x}}-\boldsymbol{y}^{\mathbf{3}}, \boldsymbol{\operatorname { c o s }} \boldsymbol{y}+\boldsymbol{x}^{\mathbf{3}}\right\rangle$ on a particle traveling around the unit circle, counterclockwise.
3. Area:
4. Use a line integral to find the area of the region enclosed by the astroid

$$
x=a \cos ^{3} t, \quad y=a \sin ^{3} t, \quad 0 \leq t \leq 2 \pi
$$

5. Use Green's Theorem to evaluate $\oint_{\mathcal{C}} \ln (1+y) d x-\frac{\boldsymbol{x} \boldsymbol{y}}{1+\boldsymbol{y}} d \boldsymbol{y}$, where \mathcal{C} is the triangle with vertices $(0,0),(2,0)$, and $(0,4)$, positively oriented.
6. Find the line integral of $\mathbf{F}=\left\langle\boldsymbol{x}^{2}+\boldsymbol{y}, \mathbf{4 x}-\boldsymbol{\operatorname { c o s }} \boldsymbol{y}\right\rangle$ around the boundary of the region \mathcal{D} that is inside the square with vertices $(0,0),(5,0),(5,5)$, and $(0,5)$, but is outside the rectangle with vertices $(\mathbf{1}, \mathbf{1}),(\mathbf{3}, \mathbf{1}),(\mathbf{3}, \mathbf{2})$, and $(\mathbf{1}, \mathbf{2})$. Assume the boundary of \mathcal{D} is oriented such that \mathcal{D} is on the left when the boundary is traversed.
