16.3 Fundamental Theorem for Line Integrals

1. Let $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{x} \boldsymbol{y}^{3}+\boldsymbol{x}^{2}$. Compute the work done along the curve \mathcal{C} by the gradient vector field of \boldsymbol{f} (see picture).
2. Fundamental Theorem for Line Integrals
3. Note: For a closed curve $\mathcal{C}, \mathbf{F}=\boldsymbol{\nabla} \boldsymbol{f}$ implies that $\oint_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}=\mathbf{0}$.
4. Evaluate $\int_{\mathcal{C}} \nabla \boldsymbol{f} \cdot d \mathbf{r}$, where $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})=\cos (\boldsymbol{\pi} \boldsymbol{x})+\sin (\boldsymbol{\pi} \boldsymbol{y})-\boldsymbol{x} \boldsymbol{y} \boldsymbol{z}$ for any curve \mathcal{C} from $\left(1, \frac{1}{2}, 2\right)$ to $(2,1,-1)$.
5. Equivalent Conditions for Path Independence

Assume \mathbf{F} is a continuous vector field in some domain D.

- F is a conservative vector field if there is a function f such that $\mathrm{F}=\boldsymbol{\nabla} \boldsymbol{f}$. The function f is called a potential function for the vector field.
- $\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}$ is independent of path if $\int_{\mathcal{C}_{\mathbf{1}}} \mathbf{F} \cdot d \mathbf{r}=\int_{\mathcal{C}_{\mathbf{2}}} \mathbf{F} \cdot d \mathbf{r}$ for any two paths $\mathcal{C}_{\mathbf{1}}$ and $\mathcal{C}_{\mathbf{2}}$ in D with the same initial and final points.
- A path \mathcal{C} is closed if its initial and final points coincide. For example, any circle is a closed path.
- A path \mathcal{C} is simple if it does not cross itself. For example, a circle is a simple curve, but a figure 8 is not simple.
- A region D is open if it does not contain any of its boundary points.
- A region D is connected if we can connect any two points in the region with a path that lies completely in D.
- A region D is simply connected if it is connected and it contains no holes.

6. Conservative Vector Fields: Given a vector field, when is it conservative? If it is conservative, what is the potential?
7. Existence of a Potential Function: Let $\mathbf{F}(x, y)=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}$ be a vector field on a simply-connected domain D. If the cross partials of \mathbf{F} are equal, that is

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}
$$

then $\mathbf{F}=\boldsymbol{\nabla} \boldsymbol{f}$ for some potential \boldsymbol{f}, and \mathbf{F} is a conservative vector field.
8. Determine if the following vector fields are conservative and find a potential function for the vector field if it is conservative.
(a) $\mathbf{F}=(y+x) \mathbf{i}+(y-x) \mathbf{j}$
(b) $\mathbf{F}=(2 x-3 y) \mathbf{i}+(-3 x+4 y-8) \mathbf{j}$
9. Given $\mathbf{F}(x, y, z)=y z \mathbf{i}+x z \mathbf{j}+(x y+2 z) \mathbf{k}$, find a function f such that $\mathbf{F}=\nabla f$, then evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ along the line segment C from $(1,0,-2)$ to $(4,6,3)$.
10. Given $\mathbf{F}(x, y)=x y^{2} \mathbf{i}+x^{2} y \mathbf{j}$, find a function f such that $\mathbf{F}=\nabla f$, then evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ along the curve $C: \mathbf{r}(t)=\left\langle t+\sin \frac{\pi t}{2}, t+\cos \frac{\pi t}{2}\right\rangle$ for $0 \leq t \leq 1$.
11. Vortex Vector Field: Consider $\mathbf{F}=\left\langle\frac{-\boldsymbol{y}}{\boldsymbol{x}^{2}+\boldsymbol{y}^{2}}, \frac{\boldsymbol{x}}{\boldsymbol{x}^{2}+\boldsymbol{y}^{2}}\right\rangle$; please see the vector plots:

