1. Let $f(x,y) = xy^3 + x^2$. Compute the work done along the curve \mathcal{C} by the gradient vector field of f (see picture).

2. Fundamental Theorem for Line Integrals

- 3. Note: For a closed curve C, $\mathbf{F} = \nabla f$ implies that $\oint_C \mathbf{F} \cdot d\mathbf{r} = \mathbf{0}$.
- 4. Evaluate $\int_{\mathcal{C}} \nabla f \cdot d\mathbf{r}$, where $f(x, y, z) = \cos(\pi x) + \sin(\pi y) xyz$ for any curve \mathcal{C} from $(1, \frac{1}{2}, 2)$ to (2, 1, -1).

5. Equivalent Conditions for Path Independence

Assume \mathbf{F} is a continuous vector field in some domain D.

- **F** is a conservative vector field if there is a function f such that $\mathbf{F} = \nabla f$. The function f is called a potential function for the vector field.
- $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ is independent of path if $\int_{\mathcal{C}_1} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathcal{C}_2} \mathbf{F} \cdot d\mathbf{r}$ for any two paths \mathcal{C}_1 and \mathcal{C}_2 in D with the same initial and final points.
- ullet A path $oldsymbol{\mathcal{C}}$ is closed if its initial and final points coincide. For example, any circle is a closed path.
- A path \mathcal{C} is simple if it does not cross itself. For example, a circle is a simple curve, but a figure 8 is not simple.
- A region D is open if it does not contain any of its boundary points.
- A region D is connected if we can connect any two points in the region with a path that lies completely in D.
- A region D is simply connected if it is connected and it contains no holes.
- 6. Conservative Vector Fields: Given a vector field, when is it conservative? If it is conservative, what is the potential?
- 7. Existence of a Potential Function: Let $\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j}$ be a vector field on a simply-connected domain D. If the cross partials of \mathbf{F} are equal, that is

$$\frac{\partial P}{\partial u} = \frac{\partial Q}{\partial x},$$

then $\mathbf{F} = \nabla f$ for some potential f, and \mathbf{F} is a conservative vector field.

8. Determine if the following vector fields are conservative and find a potential function for the vector field if it is conservative.

(a)
$$\mathbf{F} = (y+x)\mathbf{i} + (y-x)\mathbf{j}$$

(b)
$$\mathbf{F} = (2x - 3y)\mathbf{i} + (-3x + 4y - 8)\mathbf{j}$$

9. Given $\mathbf{F}(x, y, z) = yz \, \mathbf{i} + xz \, \mathbf{j} + (xy + 2z)\mathbf{k}$, find a function f such that $\mathbf{F} = \nabla f$, then evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ along the line segment C from (1, 0, -2) to (4, 6, 3).

10. Given $\mathbf{F}(x,y) = xy^2 \mathbf{i} + x^2y \mathbf{j}$, find a function f such that $\mathbf{F} = \nabla f$, then evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ along the curve C: $\mathbf{r}(t) = \left\langle t + \sin \frac{\pi t}{2}, \ t + \cos \frac{\pi t}{2} \right\rangle$ for $0 \le t \le 1$.

11. Vortex Vector Field: Consider $\mathbf{F} = \left\langle \frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right\rangle$; please see the vector plots:

