14.7 Optimization (Maxima and Minima)

- Local Maximum/Minimum: A function f has a local maximum at (a, b) if

$$
f(x, y) \leq f(a, b)
$$

when (x, y) is near (a, b), and $f(a, b)$ is called a local maximum value. A function f has a local minimum at (a, b) if

$$
f(x, y) \geq f(a, b)
$$

when (x, y) is near (a, b), and $f(a, b)$ is called a local minimum value.

- Global Maximum/Minimum: If

$$
f(x, y) \leq f(a, b)
$$

(or $f(x, y) \geq f(a, b))$ for all points (x, y) in the domain of f, then f has a global maximum (or global minimum) at (a, b).

1. Example: $f(x, y)=\sin x+\sin y$.
2. Example: $f(x, y)=\left(x^{2}+y^{2}\right) e^{-x^{2}-y^{2}}$.
3. Example: $\frac{\cos \left(x^{2}+y^{2}\right)}{1+x^{2}+y^{2}}$.

- Fermat's Theorem: If f has a local maximum or minimum at (a, b) and the first-order partial derivatives exist there, then $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$.
- Critical Point: A point (a, b) is called a critical point (or stationary point) of f if $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$.

4. Example: Find the critical points and extreme values of the function

$$
f(x, y)=x^{2}+y^{2}-4 x-4 y+10
$$

5. Example: Find the extreme values of $f(x, y)=y^{2}-x^{2}$.

- Saddle Point: The point $P(a, b, f(a, b))$ is a saddle point of $z=f(x, y)$ if (a, b) is a critical point of f and if every open disk centered at (a, b) contains points (x, y) in the domain of f for which $f(x, y)<f(a, b)$ and other points (x, y) in the domain of f for which $f(x, y)>f(a, b)$.
- Theorem (Second Derivative Test): Suppose the second partial derivatives of f are continuous on a disk with center (a, b), and suppose that $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$, that is (a, b) is a critical point. Let

$$
D(a, b)=f_{x x}(a, b) f_{y y}(a, b)-\left(f_{x y}\right)^{2}(a, b)
$$

(a) If $D>0$ and $f_{x x}(a, b)>0$, then $f(a, b)$ is a local minimum.
(b) If $D>0$ and $f_{x x}(a, b)<0$, then $f(a, b)$ is a local maximum.
(c) If $D<0$, then $f(a, b)$ has a saddle point at $(\boldsymbol{a}, \boldsymbol{b})$.
(d) If $D=0$, then no conclusion (could be a local max, local min, or a saddle point at (a, b)).
6. Example: Suppose some function f has continuous second derivatives, and a critical point at $(1,2)$. If $f_{x x}(1,2)=1, f_{x y}(1,2)=4$ and $f_{y y}(1,2)=18$, then classify the point $(1,2)$. If instead $f_{y y}(1,2)=k$, for what values of k is $(1,2)$ a saddle point?
7. Find the local maximum and minimum values and all saddle points of

$$
f(x, y)=x^{4}+y^{4}-4 x y+1
$$

- Extreme Value Theorem: Suppose that $f(x, y)$ is continuous on the closed and bounded region $R \subset \mathbb{R}^{2}$. Then f has both a global maximum and a global minimum on R. Further, a global extremum may only occur at a critical point in R or at a point on the boundary of R.
- Upshot: To find the global maximum and minimum values of a continuous function f on a closed and bounded set D :

1. Find the values of \boldsymbol{f} at the critical points of f in D.
2. Find the extreme values of f on the boundary of D.
3. The largest of the values from steps 1 and 2 is the global maximum value; the smallest of these values is the global minimum value.
4. Find the global maximum and minimum values of the function $f(x, y)=3+x y-x-2 y$ on the closed triangular region with vertices $(1,0),(5,0)$, and $(1,4)$.
5. Find the point on the plane

$$
x-y+z=4
$$

that is closest to the point $(1,2,3)$.
10. Find three positive numbers x, y, and z whose sum is 100 and whose product is maximum.

