14.6 The Gradient Vector and Directional Derivatives

- Gradient Vector: If f is a function of two variables x and y, then the gradient of f is the vector function $\boldsymbol{\nabla} \boldsymbol{f}$ defined by

1. Find the gradient of $f(x, y)=\sin x+e^{x y}$ at $(0,1)$.
2. The air temperature at ground level (x, y) is given (in Celsius) by the function

$$
T(x, y)=20-x-y+0.05 x^{3}-0.2 y^{2} .
$$

Find the temperature gradient at the origin and at the point $(-4,1)$. (See picture.)

- Recall for $z=f(x, y)$ we defined the partial derivatives at (a, b) by
- Directional Derivative: The directional derivative of f at (a, b) in the direction of a unit vector $\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle$ is
if this limit exists. If $\mathbf{u}=\mathbf{i}=\langle 1,0\rangle$, then $D_{\mathbf{i}} f(a, b)=f_{x}(a, b)$, and if $\mathbf{u}=\mathbf{j}=\langle 0,1\rangle$, then $D_{\mathbf{j}} f(a, b)=f_{y}(a, b)$.
- Theorem: If f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector $\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle$ and

Using the gradient vector we may rewrite the directional derivative in the direction of the unit vector \mathbf{u} as
3. Find the directional derivative of $f(x, y)=x^{2} y^{3}-4 y$ at the point $(2,-1)$ in the direction of the vector $\mathbf{v}=2 \mathbf{i}+5 \mathbf{j}$.
4. Find the directional derivative of $f(x, y)=x e^{y}+\cos (x y)$ at the point $(2,0)$ in the direction of $\mathbf{v}=3 \mathbf{i}-4 \mathbf{j}$.
5. Find the directional derivative of $f(x, y)=x^{3}-3 x y+4 y^{2}$ in the direction $\theta=\pi / 6$, that is, in the direction that points upward and to the right at an angle of θ. What is $D_{\mathbf{u}} f(1,2)$?

- Three Variables: The gradient for $f(x, y, z)$ is
and the directional derivative in the direction of a unit vector \mathbf{u} is
- Recall the angle between two vectors.
- Theorem: Suppose that f is a differentiable function of two (or three) variables. Then
(a) the maximum value of the directional derivative $D_{\mathbf{u}} f(x, y)$ (the maximum rate of change of f) at (a, b) is $|\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{a}, \boldsymbol{b})|$ and it occurs when \mathbf{u} has the same direction as the gradient vector $\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$: f increases most rapidly in the direction of the gradient;
(b) the minimum value of the directional derivative $D_{\mathbf{u}} f(x, y)$ (the minimum rate of change of $f)$ at (a, b) is $-|\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{a}, \boldsymbol{b})|$ and it occurs when \mathbf{u} has the opposite direction as the gradient vector $\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}): f$ decreases most rapidly in the direction opposite the gradient;
(c) the rate of change of f at (a, b) is 0 in the directions orthogonal to $\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{a}, \boldsymbol{b})$;
(d) the gradient $\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{a}, \boldsymbol{b})$ is orthogonal to the level curve $f(x, y)=c$ at the point (a, b), where $c=f(a, b)$.

Proof:
6. Find a unit vector in the direction in which $f(x, y)=20-x^{2}-y^{2}$ decreases most rapidly at $P(-1,-3)$, and find the rate of change of f at P in that direction. At what angle does the path in that direction begin?
7. If $f(x, y)=x e^{y}$, find the rate of change of f at the point $P(2,0)$ in the direction from P to $Q(1 / 2,2)$. In what direction does f have the maximum rate of change? What is this maximum rate of change?
8. Find the direction in which the function $f(x, y)=e^{2 x+3 y-1}$ increases most rapidly, starting at the point $(3,7)$, and calculate its directional derivative in that direction.
9. If the elevation of a hill is given by $f(x, y)=200-y^{2}-4 x^{2}$, in which direction will rain water run off the hill at the site $(1,2)$?

