14.5 Chain Rule

1. Chain Rule I: Suppose that z = f(x, y) is a differentiable function of x and y, where x = g(t) and y = h(t) are both differentiable functions of t. Then z is a differentiable function of t and

Proof:

2. If $z = x^2y + xy^3$, where $x = \cos t$, $y = \sin t$, find dz/dt when $t = \pi/2$.

3. Find dz/dt if $z = \sqrt{x^2 + y^2}$ and $x = e^{2t}$ and $y = e^{-2t}$.

4. Suppose the production of a firm is modeled by the Cobb-Douglas production function

$$P(K, L) = 20K^{1/4}L^{3/4},$$

where K measures capital (in millions of dollars) and L measures the labor force (in thousands of workers). Suppose that when L=2 and K=6, the labor force is decreasing at the rate of 20 workers per year and capital is growing at the rate of \$400,000 per year. Determine the rate of change of production.

5. Chain Rule II: Suppose that z = f(x, y) is a differentiable function of x and y, where x = g(s, t) and y = h(s, t) both have first partial derivatives with respect to s and t. Then

6. Find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$ for $z = \ln(x^2 + y^2)$, where $x = e^s \cos t$ and $y = e^s \sin t$.

7. Find
$$\frac{\partial w}{\partial s}$$
 and $\frac{\partial w}{\partial t}$ for $w = xy + xz + yz$, where $x = st$, $y = e^{st}$, $z = s + t$.

8. If
$$w = x^2 + y^2 + z^2$$
 and

$$x = \rho \sin \phi \cos \theta$$
, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$

find $\partial w/\partial \rho$ and $\partial w/\partial \theta$.

9.	Implicit Differentiation:	Suppose	F(x,y,z)=0	implicitly	defines a	function	z =	f(x,y),
	where f is differentiable	Then						

Proof:

10. Find
$$\frac{\partial z}{\partial x}$$
 and $\frac{\partial z}{\partial y}$ if $x^4y + y^4z + z^4x = 5xyz$.

11. Find the tangent plane to the surface $ze^z = x^2 - y^2$ at the point (1, 1, 0).