14.4 Tangent Planes and Linear Approximations

- Tangent Plane:

1. Find the tangent plane to the surface $z=3 y^{2}-2 x^{2}+x$ at the point $(2,-1,-3)$.
2. Find the tangent plane to the surface $z=\sqrt{4-x^{2}-2 y^{2}}$ at the point $(1,-1,1)$.

- Linearization/Linear Approximations:

3. Find the linearization at $(0,0)$ of the function $f(x, y)=1+y+x \cos y$.
4. If $f(x, y)=x^{2}+y^{2}$ and the local linearization to f at a point P is given by

$$
L(x, y)=2 y-2 x-2,
$$

find P.

- Recall that for a function of one variable, $y=f(x)$, if x changes from a to $a+\Delta x$, we defined the increment of y as

$$
\Delta y=f(a+\Delta x)-f(a)
$$

If f is differentiable at a, then

$$
\Delta y=f^{\prime}(a) \Delta x+\varepsilon \Delta x
$$

where $\varepsilon \rightarrow 0$ as $\Delta x \rightarrow 0$.

- Increment of z : If $z=f(x, y)$ and (x, y) changes from (a, b) to $(a+\Delta x, b+\Delta y)$, then the increment of z is given by

$$
\Delta z=f(a+\Delta x, b+\Delta y)-f(a, b)
$$

- Differentiable: If $z=f(x, y)$, then f is differentiable at (a, b) if Δz can be expressed in the form

$$
\Delta z=f_{x}(a, b) \Delta x+f_{y}(a, b) \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y
$$

where ε_{1} and $\varepsilon_{2} \rightarrow 0$ as $(\Delta x, \Delta y) \rightarrow(0,0)$.

- Theorem: If the partial derivatives f_{x} and f_{y} exist near (a, b) and are continuous at (a, b), then f is differentiable at (a, b).

5. Show that $f(x, y)=\frac{x}{x+y}$ is differentiable at $(2,1)$ and find its linearization there.
6. If $f(x, y)$ is differentiable at $(3,4)$ with $f(3,4)=5, f_{x}(3,4)=2$ and $f_{y}(3,4)=-1$, estimate the value of $f(3.01,3.98)$.

- Differentials: For a differentiable function $z=f(x, y)$ we define the differential $d z$, also called the total differential, to be

$$
d z=f_{x}(x, y) d x+f_{y}(x, y) d y=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y
$$

where the differentials $d x$ and $d y$ are independent variables.
If $d x=\Delta x=x-a$ and $d y=\Delta y=y-b$ then the differential of z is

$$
d z=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

7. If $z=f(x, y)=x^{2}+2 x y-4 x$, find the differential $d z$. If (x, y) changes from $(1,2)$ to $(1.01,2.04)$, compare the values of Δz and $d z$.
8. The length and width of a rectangle are measured as 30 cm and 24 cm , respectively, with an error in measurement of at most 0.1 cm in each. Use differentials to estimate the maximum error in the calculated area of the rectangle.
