14.3 Partial Derivatives

- Let $f(x, y)$ be a function of two variables, where $y=b$ is fixed. Then $g(x)=f(x, b)$ is a function of a single variable x. If g has a derivative at a, then we call it the partial derivative of f with respect to x at (a, b) and write

$$
f_{x}(a, b)=g^{\prime}(a) .
$$

- Now keep $x=a$ fixed, and let $h(y)=f(a, y)$. If h has a derivative at b, then we call it the partial derivative of f with respect to y at (a, b) and write

$$
f_{y}(a, b)=h^{\prime}(b) .
$$

- By the definition of a derivative, we have

$$
\begin{aligned}
f_{x}(a, b) & =\lim _{h \rightarrow 0} \frac{f(a+h, b)-f(a, b)}{h} \\
f_{y}(a, b) & =\lim _{k \rightarrow 0} \frac{f(a, b+k)-f(a, b)}{k}
\end{aligned}
$$

The partial derivatives of $f(x, y)$ are the functions $f_{x}(x, y)$ and $f_{y}(x, y)$ obtained by letting the point (a, b) vary.

- Notation: If $z=f(x, y)$, then we may write

$$
\begin{aligned}
& f_{x}(x, y)=f_{x}=\frac{\partial f}{\partial x}=\frac{\partial}{\partial x} f(x, y)=\frac{\partial z}{\partial x}=f_{1}=D_{1} f=D_{x} f \\
& f_{y}(x, y)=f_{y}=\frac{\partial f}{\partial y}=\frac{\partial}{\partial y} f(x, y)=\frac{\partial z}{\partial y}=f_{2}=D_{2} f=D_{y} f
\end{aligned}
$$

- To find f_{x} regard y as a constant and differentiate $f(x, y)$ with respect to x. To find f_{y} regard x as a constant and differentiate $f(x, y)$ with respect to y.

1. Find all first partial derivatives for $f(u, v)=\left(u^{2} v-v^{3}\right)^{5}$ and $g(s, t)=\tan ^{-1}\left(s t^{2}\right)$.
2. If $f(x, y)=x^{2}+3 x^{3} y-x y^{2}$ find $f_{x}(0,1)$ and $f_{y}(1,0)$.
3. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ for the following functions.

$$
f(x, y)=\frac{x^{y}}{\cos x+\sin y}
$$

$$
f(x, y)=e^{a x^{2}+b y^{2}+c}
$$

$$
f(x, y)=\ln \left(x^{4}+2 y^{3}\right)
$$

4. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if z is defined implicitly as a function of x and y by the equation

$$
3 x^{3}+2 y^{3}+z^{3}+6 x y z=1
$$

5. Interpretations: Partial derivative can be interpreted as rates of change. The geometric interpretation: the partial derivatives are the slopes of the tangent lines at $P(a, b, c)$ to the curves given by the intersection of the surface given by $z=f(x, y)$ and the planes $x=a$ and $y=b$.
6. If f is a function of two variables, then its partial derivatives f_{x} and f_{y} are also functions of two variables.
7. Second Partials: The second partial derivatives of f are

$$
\begin{aligned}
& \left(f_{x}\right)_{x}=f_{x x}=f_{11}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial^{2} z}{\partial x^{2}} \\
& \left(f_{x}\right)_{y}=f_{x y}=f_{12}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial^{2} z}{\partial y \partial x} \\
& \left(f_{y}\right)_{x}=f_{y x}=f_{21}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} z}{\partial x \partial y} \\
& \left(f_{y}\right)_{y}=f_{y y}=f_{22}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial^{2} z}{\partial y^{2}}
\end{aligned}
$$

8. Find all second partial derivatives of

$$
f(x, y)=x^{3}+x^{2} y^{3}-2 y^{2}
$$

9. Clairaut's Theorem: Suppose f is defined on a disk D that contains the point (a, b). If the functions $f_{x y}$ and $f_{y x}$ are both continuous on D, then

$$
f_{x y}(a, b)=f_{y x}(a, b)
$$

10. Verify that the function $u=1 / \sqrt{x^{2}+y^{2}+z^{2}}$ is a solution of the 3-D Laplace equation

$$
u_{x x}+u_{y y}+u_{z z}=0 .
$$

11. Find the partial derivatives of $f(x, y)=\int_{x}^{y} e^{t^{2}+t+1} d t$.
12. Find $f_{x}, f_{y}, f_{x y}, f_{y x}$ for $f(x, y)=x y e^{3 x y}$.
