14.2 Limits and Continuity

- Limit Definition: For a function \boldsymbol{f} of two variables whose domain \boldsymbol{D} contains points arbitrarily close to $(\boldsymbol{a}, \boldsymbol{b})$,

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L
$$

if for every number $\varepsilon>\mathbf{0}$ there is a corresponding number $\delta>\mathbf{0}$ such that $|f(\boldsymbol{x}, \boldsymbol{y})-\boldsymbol{L}|<\varepsilon$ whenever $(\boldsymbol{x}, \boldsymbol{y}) \in \boldsymbol{D}$ and

$$
0<\sqrt{(x-a)^{2}+(y-b)^{2}}<\delta
$$

- Important Note: If

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L_{1} \quad \text { along a path } C_{\mathbf{1}}
$$

but we calculate that

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L_{2} \neq L_{1} \quad \text { along another path } C_{2}
$$

then the overall limit $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ does not exist.

1. Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}-4 \boldsymbol{y}^{2}}{x^{2}+2 \boldsymbol{y}^{2}}$ does not exist.
2. Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{\boldsymbol{x}^{2}-\boldsymbol{y}^{2}}{\boldsymbol{x}^{\mathbf{2}}+\boldsymbol{y}^{\mathbf{2}}}$ does not exist.
3. Does $\lim _{(x, y) \rightarrow(0,0)} \frac{\boldsymbol{y}^{2} \sin ^{2} \boldsymbol{x}}{\boldsymbol{x}^{4}+\boldsymbol{y}^{4}}$ exist?
4. Does $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} \boldsymbol{y} e^{y}}{\boldsymbol{x}^{4}+4 y^{2}}$ exist?
5. Find $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{\sqrt{x^{2}+y^{2}}}$ if it exists.
6. Determine $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{\boldsymbol{x}^{2}+\boldsymbol{y}^{2}}$.
7. Determine $\lim _{(x, y) \rightarrow(0,0)} \frac{e^{-x^{2}-y^{2}}-1}{\sqrt{x^{2}+y^{2}}}$.

- Continuity: A function \boldsymbol{f} of two variables is continuous at $(\boldsymbol{a}, \boldsymbol{b})$ if

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)
$$

Examples: polynomials, rational functions, trigonometric functions, exponential functions, and logarithmic functions are all continuous on their domains.
8. Determine the set of points at which the function is continuous: $\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{y})=\frac{\boldsymbol{x} \boldsymbol{y}}{1+\boldsymbol{e}^{\boldsymbol{x}-\boldsymbol{y}}}$.
9. Determine the set of points at which the function is continuous: $G(x, y)=\ln \left(x^{2}+2 y^{2}-4\right)$.
10. Determine the largest set on which the function $f(x, y)=\frac{2 \boldsymbol{x} \boldsymbol{y}}{\mathbf{9 - \boldsymbol { x } ^ { 2 } - \boldsymbol { y } ^ { 2 }}}$ is continuous.
11. Is f continuous? $f(x, y)= \begin{cases}\frac{x^{2} y^{3}}{2 x^{2}+y^{2}} & :(x, y) \neq(0,0), \\ 1 & :(x, y)=(0,0) .\end{cases}$

