13.4 Motion in Three-Space

1. Speed:
$$v(t) = s'(t) = |\mathbf{r}'(t)|$$

Velocity:
$$\mathbf{v}(t) = \mathbf{r}'(t)$$

Acceleration:
$$\mathbf{a}(t) = \mathbf{v}'(t) = \mathbf{r}''(t)$$

2. Find the velocity and acceleration functions for the position function
$$\mathbf{r}(t) = \langle te^{-2t}, 2e^{-2t}, -3t^2 \rangle$$
.

3. Find the velocity and position functions if $\mathbf{a}(t) = \langle t, 0, -4 \rangle$, $\mathbf{v}(0) = \langle 12, -4, 0 \rangle$, $\mathbf{r}(0) = \langle 5, 0, 2 \rangle$.

- 4. Newton's Second Law of Motion: $\mathbf{F} = m\mathbf{a}$, where \mathbf{F} is the net force vector acting on the object, m is the mass, and \mathbf{a} is the acceleration vector.
- 5. Projectile Motion: A projectile is launched with an initial speed of 49 meters per second from ground level at an angle of $\pi/4$ to the horizontal. Assuming the only force acting on the object is gravity (9.8 meters per second per second), find the
 - (a) maximum altitude,
 - (b) horizontal range, and
 - (c) speed at impact of the projectile.

6. Tangential and Normal Components of Acceleration: Imagine an object moving along a curve determined by $\mathbf{r}(t)$. Recall that the tangent (velocity) vector is $\mathbf{v}(t) = \mathbf{r}'(t)$, and the speed is $v(t) = |\mathbf{v}(t)|$. Then $\mathbf{v}(t) = v(t)\mathbf{T}(t)$, and the acceleration $\mathbf{a}(t)$ of the object is given by

$$\mathbf{a}(t) = v'(t)\mathbf{T}(t) + \kappa(t)v^{2}(t)\mathbf{N}(t).$$

This says that the acceleration is always in the osculating $\mathbf{T}(t)\mathbf{N}(t)$ -plane. The tangential and normal components of acceleration are then the coefficients $a_{\mathbf{T}} = v'(t)$ and $a_{\mathbf{N}} = \kappa(t)v^2(t)$, respectively.

We may also write

$$\mathbf{a}(t) = \left(\frac{\mathbf{a}(t) \cdot \mathbf{v}(t)}{|\mathbf{v}(t)|}\right) \mathbf{T}(t) + \left(\frac{|\mathbf{a}(t) \times \mathbf{v}(t)|}{|\mathbf{v}(t)|}\right) \mathbf{N}(t).$$

Proof:

- 7. A particle moves through 3-space such that its position vector at time t is $\mathbf{r}(t) = \langle t, t^2, t^3 \rangle$. Find the
 - (a) scalar tangential and normal components of acceleration at time t.
 - (b) scalar tangential and normal components of acceleration at time t=1.
 - (c) vector tangential and normal components of acceleration at time t=1.
 - (d) curvature of the path at the point at time t = 1.