
For practice: (860) 17,23,25,33,39,47,51a

ASSIGNMENT TO BE TURNED IN:

- 1. Find the curvature of the helix $\mathbf{r}(t) = \langle 2\cos 2t, 2\sin 2t, 3t \rangle$.
- 2. Calculate $\mathbf{r}'(t)$ and $\mathbf{T}(t)$, and evaluate $\mathbf{T}(1)$ for $\mathbf{r}(t) = \langle 1 + 2t, t^2, 3 t^2 \rangle$.
- 3. Find the curvature of the plane curve $y = t^n$ at the point t = 1. Your answer will involve n.
- 4. (a) Show that the curvature function of the parametrization $\mathbf{r}(t) = \langle a \cos t, b \sin t \rangle$ of the ellipse $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1$ is

$$\kappa(t) = \frac{ab}{\left(b^2 \cos^2 t + a^2 \sin^2 t\right)^{3/2}}.$$

- (b) Use this equation for $\kappa(t)$ to find the t values at which the maximum and minimum curvature occurs on the ellipse, assuming b > a. Lastly, what happens to the curvature if a = b?
- 5. The Cornu spiral is the plane curve $\mathbf{r}(t) = \left\langle \int_0^t \sin\left(\frac{u^2}{2}\right) du, \int_0^t \cos\left(\frac{u^2}{2}\right) du \right\rangle$. Find $\kappa(t)$ for

the Cornu spiral; your answer should have an absolute value in it.

6. Find the unit normal vector to the Cornu spiral (previous problem) at $t = \sqrt{\pi}$.