1. Curvature I: The curvature κ (kappa) of a curve is the scalar quantity $\kappa = \left| \frac{d\mathbf{T}}{ds} \right|$, the magnitude of the rate of change of the unit tangent vector \mathbf{T} with respect to arc length s along the curve. This can be rewritten as

$$\kappa = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|}, \text{ where } |\mathbf{r}'(t)| \neq 0.$$

2. Find the curvature of the circle of radius q centered at (a, b).

3. Curvature II: The curvature κ of a curve is also given by

$$\kappa = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3} = \frac{|\mathbf{v}(t) \times \mathbf{a}(t)|}{|\mathbf{v}(t)|^3}.$$

4. Find the curvature of $\mathbf{r}(t) = t\mathbf{i} + t\mathbf{j} + (1 - t^2)\mathbf{k}$. When is the maximum curvature?

5. Curvature for a plane curve y = f(x): For the plane curve y = f(x) we have $\mathbf{r}(t) = \langle t, f(t), 0 \rangle$, and the curvature is given by

$$\kappa = \frac{|f''(x)|}{[f'(x)^2 + 1]^{3/2}}.$$

6. Unit Normal Vector: Since the unit tangent vector $\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}$ has constant norm (of 1), $\mathbf{T}(t)$ and $\mathbf{T}'(t)$ are orthogonal. Thus the unit normal vector is a unit vector in the same direction as $\mathbf{T}'(t)$ given by

$$\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{|\mathbf{T}'(t)|}.$$

For practice: (860) 17,23,25,33,39,47,51a

ASSIGNMENT TO BE TURNED IN:

- 1. Find, in terms of β , the curvature of the helix $\mathbf{r}(t) = \langle \sin t, \cos t, \beta t \rangle$, where β is some constant.
- 2. Calculate $\mathbf{r}'(t)$ and $\mathbf{T}(t)$, and evaluate $\mathbf{T}(1)$ for $\mathbf{r}(t) = \langle 1 + 2t, t^2, 3 t^2 \rangle$.
- 3. Find the curvature of the plane curve $y = t^n$ at the point t = 1. Your answer will involve n.
- 4. (a) Show that the curvature function of the parametrization $\mathbf{r}(t) = \langle a \cos t, b \sin t \rangle$ of the ellipse $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1$ is $\kappa(t) = \frac{ab}{\left(b^2 \cos^2 t + a^2 \sin^2 t\right)^{3/2}}.$
 - (b) Use this equation for $\kappa(t)$ to find the t values at which the maximum and minimum curvature occurs on the ellipse, assuming b > a. Lastly, what happens to the curvature if a = b?
- 5. The Cornu spiral is the plane curve $\mathbf{r}(t) = \left\langle \int_0^t \sin\left(\frac{u^2}{2}\right) du, \int_0^t \cos\left(\frac{u^2}{2}\right) du \right\rangle$. Find $\kappa(t)$ for

the Cornu spiral; your answer should have an absolute value in it.

6. Find the unit normal vector to the Cornu spiral (previous problem) at $t = \sqrt{\pi}$.