13.3b Curvature

1. Curvature I: The curvature κ (kappa) of a curve is the scalar quantity $\kappa=\left|\frac{d \mathbf{T}}{d s}\right|$, the magnitude of the rate of change of the unit tangent vector \mathbf{T} with respect to arc length s along the curve. This can be rewritten as

$$
\kappa=\frac{\left|\mathbf{T}^{\prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|}, \quad \text { where } \quad\left|\mathbf{r}^{\prime}(t)\right| \neq 0
$$

2. Find the curvature of the circle of radius q centered at (a, b).
3. Curvature II: The curvature κ of a curve is also given by

$$
\kappa=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{3}}=\frac{|\mathbf{v}(t) \times \mathbf{a}(t)|}{|\mathbf{v}(t)|^{3}}
$$

4. Find the curvature of $\mathbf{r}(t)=t \mathbf{i}+t \mathbf{j}+\left(1-t^{2}\right) \mathbf{k}$. When is the maximum curvature?
5. Curvature for a plane curve $y=f(x)$: For the plane curve $y=f(x)$ we have $\mathbf{r}(t)=\langle t, f(t), 0\rangle$, and the curvature is given by

$$
\kappa=\frac{\left|f^{\prime \prime}(x)\right|}{\left[f^{\prime}(x)^{2}+1\right]^{3 / 2}} .
$$

6. Unit Normal Vector: Since the unit tangent vector $\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}$ has constant norm (of 1), $\mathbf{T}(t)$ and $\mathbf{T}^{\prime}(t)$ are orthogonal. Thus the unit normal vector is a unit vector in the same direction as $\mathbf{T}^{\prime}(t)$ given by

$$
\mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left|\mathbf{T}^{\prime}(t)\right|}
$$

13.3b Curvature

For practice: (860) 17,23,25,33,39,47,51a

ASSIGNMENT TO BE TURNED IN:

1. Find, in terms of β, the curvature of the helix $\mathbf{r}(t)=\langle\sin t, \cos t, \beta t\rangle$, where β is some constant.
2. Calculate $\mathbf{r}^{\prime}(t)$ and $\mathbf{T}(t)$, and evaluate $\mathbf{T}(1)$ for $\mathbf{r}(t)=\left\langle 1+2 t, t^{2}, 3-t^{2}\right\rangle$.
3. Find the curvature of the plane curve $y=t^{n}$ at the point $t=1$. Your answer will involve n.
4. (a) Show that the curvature function of the parametrization $\mathbf{r}(t)=\langle a \cos t, b \sin t\rangle$ of the ellipse $\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1$ is

$$
\kappa(t)=\frac{a b}{\left(b^{2} \cos ^{2} t+a^{2} \sin ^{2} t\right)^{3 / 2}}
$$

(b) Use this equation for $\kappa(t)$ to find the t values at which the maximum and minimum curvature occurs on the ellipse, assuming $b>a$. Lastly, what happens to the curvature if $a=b$?
5. The Cornu spiral is the plane curve $\mathbf{r}(t)=\left\langle\int_{0}^{t} \sin \left(\frac{u^{2}}{2}\right) d u, \int_{0}^{t} \cos \left(\frac{u^{2}}{2}\right) d u\right\rangle$. Find $\kappa(t)$ for

the Cornu spiral; your answer should have an absolute value in it.
6. Find the unit normal vector to the Cornu spiral (previous problem) at $t=\sqrt{\pi}$.

