For practice: (860) 1,11,13,15
Example: Find the arc length parametrization of $\mathbf{r}(t)=2 t \mathbf{i}+(1-2 t) \mathbf{j}+t \mathbf{k}$: Since

$$
\left|\mathbf{r}^{\prime}(t)\right|=|\langle 2,-2,1\rangle|=3,
$$

the arc length function is

$$
s(t)=\int_{0}^{t}\left|\mathbf{r}^{\prime}(t)\right| d t=3 t
$$

Solving for t in terms of $s, t=\varphi(s)=s / 3$. Then an arc length parametrization is

$$
\mathbf{r}_{1}(s)=\mathbf{r}(\varphi(s))=\mathbf{r}(s / 3)=\left\langle\frac{2 s}{3}, 1-\frac{2 s}{3}, \frac{s}{3}\right\rangle
$$

Note that $\mathbf{r}_{1}^{\prime}(s)=\langle 2 / 3,-2 / 3,1 / 3\rangle$, and $\left|\mathbf{r}_{1}^{\prime}(s)\right|=1$.

ASSIGNMENT TO BE TURNED IN:

1. Find the length of the curve $\mathbf{r}(t)=\left(2 t^{2}+1\right) \mathbf{i}+\left(2 t^{2}-1\right) \mathbf{j}+t^{3} \mathbf{k}$ for $0 \leq t \leq 4$.
2. Find the speed of $\mathbf{r}(t)=\sin 3 t \mathbf{i}+\cos 4 t \mathbf{j}+\cos 5 t \mathbf{k}$ at $t=\frac{\pi}{2}$.
3. Which of the following is an arc length parametrization of a circle of radius 4 centered at the origin? (Yes or No, show work.)
(a) $\mathbf{r}_{1}(t)=4 \sin t \mathbf{i}+4 \cos t \mathbf{j}$
(b) $\mathbf{r}_{2}(t)=4 \sin 4 t \mathbf{i}+4 \cos 4 t \mathbf{j}$
(c) $\mathbf{r}_{3}(t)=4 \sin \frac{t}{4} \mathbf{i}+4 \cos \frac{t}{4} \mathbf{j}$
4. Find an arc length parametrization of the circle in the plane $z=9$ with radius 4 and center $(1,4,9)$.
5. Show that one arch of the cycloid $\mathbf{r}(t)=\langle t-\sin t, 1-\cos t\rangle$ has length 8 . Find the value of t in $[0,2 \pi]$ where the speed is at a maximum. Hint: You'll need a half-angle formula.
6. Find an arc length parametrization of $\mathbf{r}(t)=\left\langle t^{2}, t^{3}\right\rangle$.
7. A helix of radius R and height h making N complete turns has the parametrization

$$
\left\langle R \cos \left(\frac{2 \pi N t}{h}\right), R \sin \left(\frac{2 \pi N t}{h}\right), t\right\rangle
$$

for $0 \leq t \leq h$. Use this to find a general formula for the length of a helix of radius R and height h that makes N complete turns.

