1. Vector-Valued Function: A vector-valued function $\mathbf{r}(t)$ is a mapping from its domain $D \subset \mathbb{R}$ to its range $R \subset \mathbb{R}^{3}$ so that for each t in D we have $\mathbf{r}(t)=\mathbf{v}$ for exactly one vector $\mathbf{v} \in \mathbb{R}^{3}$. A vector-valued function can be written as

$$
\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}
$$

using scalar functions f, g, h that are called component functions of \mathbf{r}.
2. Sketch the curve traced out by the endpoint of the two-dimensional vector-valued function

$$
\mathbf{r}(t)=(t+1) \mathbf{i}+\left(t^{2}-2\right) \mathbf{j}
$$

3. Sketch the curve traced out by the endpoint of the vector-valued function

$$
\mathbf{r}(t)=(4 \cos t) \mathbf{i}-(3 \sin t) \mathbf{j}, \quad t \in \mathbb{R}
$$

4. Sketch the curve traced out by the vector-valued function

$$
\mathbf{r}(t)=(\sin t) \mathbf{i}-(3 \cos t) \mathbf{j}+(2 t) \mathbf{k}, \quad t \geq 0 .
$$

5. Match each of the vector-valued functions below with the corresponding computer-generated graph:

$$
\begin{array}{ll}
\mathbf{f}_{1}(t)=\langle\cos t, \ln t, \sin t\rangle & \mathbf{f}_{2}(t)=\langle t \cos t, t \sin t, t\rangle \\
\mathbf{f}_{3}(t)=\langle 3 \sin 2 t, t, t\rangle & \mathbf{f}_{4}(t)=\left\langle 5 \sin ^{3} t, 5 \cos ^{3} t, t\right\rangle
\end{array}
$$

6. Find parametric equations for the intersection of the cone $z=\sqrt{x^{2}+y^{2}}$ and the plane $y+z=2$.
7. Parametrize the intersection of the plane $y=\frac{1}{2}$ with the sphere $x^{2}+y^{2}+z^{2}=1$.
8. Describe the curve $\mathbf{r}(t)=(t \sin t) \mathbf{i}+(t \cos t) \mathbf{j}+t^{2} \mathbf{k}$ and its projections onto the $x y$ - and $y z$-planes. Find a circular paraboloid on which the curve lies.
9. Show that the graph $\mathbf{r}(t)=\langle 3 \cos t, 3 \sin t, 3 \sin t\rangle$ lies on both a circular cylinder and a plane. What shape is it? Find the length of its major axis and its minor axis.
10. (847) \#47. Two particles travel along space curves

$$
\mathbf{r}_{1}(t)=\left\langle t^{2}, 7 t-12, t^{2}\right\rangle \quad \text { and } \quad \mathbf{r}_{2}(t)=\left\langle 4 t-3, t^{2}, 5 t-6\right\rangle
$$

respectively. Do the particles collide? Do the paths intersect?
11. Limits: For a vector-valued function $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle$, the limit of $\mathbf{r}(t)$ as t approaches a is given by

$$
\lim _{t \rightarrow a} \mathbf{r}(t)=\lim _{t \rightarrow a}\langle f(t), g(t), h(t)\rangle=\left\langle\lim _{t \rightarrow a} f(t), \lim _{t \rightarrow a} g(t), \lim _{t \rightarrow a} h(t)\right\rangle,
$$

provided all the limits exist. If any of the limits on the right-hand side above fail to exist, then $\lim _{t \rightarrow a} \mathbf{r}(t)$ does not exist.
12. Find the domain of $\left\langle\frac{3}{t^{2}}, \frac{\ln t}{t^{2}-1}, \sin 2 t\right\rangle$, and $\lim _{t \rightarrow 1}\left\langle\frac{3}{t^{2}}, \frac{\ln t}{t^{2}-1}, \sin 2 t\right\rangle$.
13. Continuity: The vector-valued function $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle$ is continuous at $t=a$ whenever $\lim _{t \rightarrow a} \mathbf{r}(t)=\mathbf{r}(a)$.
14. Theorem on Continuity: The vector-valued function $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle$ is continuous at $t=a$ if and only if the component functions f, g, h are all continuous at $t=a$.
15. Determine the values of t where the vector-valued function

$$
\mathbf{r}(t)=\left\langle\frac{1}{t} \sin 2 \pi t, \tan 2 \pi t, \cos 2 \pi t\right\rangle
$$

is continuous.

